数学建模优秀论文范文的意义在于提供了一个优秀的写作模板和关键概念的解释。它展示了如何将数学理论应用于实际问题,如何使用数学模型进行预测和解释,以及如何使用有效的语言表达结果。此外,优秀论文通常会强调实验设计和数据分析的重要性,并展示了如何通过调整参数和假设来改进模型。这有助于读者了解如何写出具有说服力的论文,同时提供了学习和改进的资源。
数学建模优秀论文范文1
前言
创新人才的培养是新的时代对高等教育提出的新要求。培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力。
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1]。
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养。尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力。
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践。
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效。数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2]。
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程。数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程。
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3—7]。
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点。现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中总结的几点看法。
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法。
用数学语言进行交流和良好的符号意识是重要的数学素质。数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的。能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式。数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征。
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型。通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决。
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、抽象思维、逻辑推理和表达能力,提高学生的数学素质和数学能力。在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强。在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力。
而在学生的书面作业或论文报告中,注意培养学生数学语言表达的规范性。书面表达是数学语言表达能力的一种重要形式。通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成。在书面表达上,主要应做到思维清晰、叙述简洁、书写规范。例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范。
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正。
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍。由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力。
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程。优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍。实验课的地位要给予应有的重视。我院现存的一个重要表现就是实验设备不足,实验室开放时间不够。为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室。
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备。精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神。在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计。要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则。
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解。熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化创新思维的开发。
教学方法上实行启发参与式教学法:启发—参与—诱导—提高。充分发挥学生主体作用,以学生亲自动脑动手为主。
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高。数学实验是一门强调实践、强调应用的课程。
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程。在这一教学活动中,通过数学软件如MAT—LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程。
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力。
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者。
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力。
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力。一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标。数学建模与数学实验课程通过实际问题——方法与分析——范例——软件——实验——综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法。
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法。通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养。实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用。
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提。再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣。
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显。基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决。在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范。对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正。
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺。只有不断的学习和总结,才有数学素养的培养和创新能力的提高。
参考文献:
[1]叶其孝。把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J]。工程数学学报,2003,(8):1—11。
[2]颜荣芳,张贵仓,李永祥。现代信息技术支持的数学建模创新教育[J]。电化教育研究,2009,(3)。
[3]郑毓信。数学方法论的理论与实践[M]。广西教育出版社,2009。
[4]姜启源。数学实验与数学建模[J]。数学的实践与认识,2001,(5):613—617。
[5]姜启源,谢金星,叶俊。数学建模[M]。第3版。北京:高等教育出版社,2002。
[6]周家全,陈功平。论数学建模教学活动与数学素质的培养[J]。中山大学学报,2002,(4):79—80。
[7]付桐林。数学建模教学与创新能力培养[J]。教育导刊,2010,(08):89—90。
数学建模优秀论文范文2
摘要:
数学建模是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段,是数学与各个领域沟通的桥梁,本文先介绍了数学建模的概念,然后对MATLAB软件相关特点做出介绍,其次从数学建模实例出发,说明了MATLAB软件在数学建模中的重要作用,结果表明MATLAB软件可以使数学建模效率提高,结果清晰、明确,同时在数学教学方面也有重大意义。
关键词:
数学建模;MATLAB;数学模型;数值计算
21世纪的今天,我们生活在“大数据”时代里,数据信息隐藏于各行各业,如互联网、股市、勘探、军工、商业等,可以说我们每天都在跟数据打交道,因此高效的数据处理方式显得尤为重要。数学建模是联系实际问题与数学之间的桥梁,建模的思想与以往解决问题的思路有很大的不同,我们以往求解数学问题时,都有明确的目标和已知条件,我们只要通过合理的方法,进行多次的数学运算,便能得到问题的解析解,但在现实生活中,很多实际问题是很难得到解析解的,甚至求解的问题和结果的范围都是模糊不清的,数学建模主要就是解决这样的问题,我们以实际问题出发,根据已有的经验,对已有的数据进行相关的分析、处理,通过合理的简化,建立合适的模型,再求解模型,最终会得到结果,这种方法行之有效,在实际生活中,通过建模已经解决了大量难题,近年来,随着科技的飞速发展,很多数学软件应运而生,如MATLAB、Mathematic、Maple等,目前应用最为广泛的数学软件便是MATLAB,它是1984年由美国MathWork公司推出的商业数学软件,用于算法开发,数据可视化、数值计算的高级计算语言和交互式环境,凭借计算功能强大、操作简便的特点在数学软件中脱颖而出,使得很多人在建模中选择该软件。
为了说明MATLAB软件能够提高数学建模的效率和质量,本文将以2014年高教杯全国大学生数学竞赛A题为例,来演示MATLAB软件在数学建模中的作用,下面首先对数学建模做简要介绍。
1数学建模简介
1.1数学建模与数学模型
数学建模一词出现的时间并不是很长,大概可以追溯到30年前,它的出现是基于科学技术的进步,尤其近半个世纪以来,随着计算机技术的进步和发展,数学建模便应运而生,并得到迅速的发展,直到现在已经大致形成了体系,在我国,数学建模比赛也有20多年的时间了,建模参考书籍越来越多,内容越来越完备,不同的书籍对数学建模的定义虽然有所不同,但大致可以归纳位:对实际问题进行分析,做出简化假设,分析其内在规律,并运用数学符号和数学语言将规律描述出来,再用适当的数学工具,得到一个数学结构,该结构称为数学模型,建立数学模型的过程叫做数学建模。
应用数学去解决实际问题时,建立数学模型是至关重要的一步,也是比较困难的一步,建立数学模型的过程,就是把一个实际问题进行合理的简化,并对相关信息进行调查、收集、整理,分析出问题的内在规律,并用数学符号将这种隐含的规律表达出来,然后运用恰当的数学方法对其进行分析、计算,最终解决问题,这一步对建模者的数学基础要求比较高,要求建模者有较为完善的数学体系,并且还要有敏锐的想象力和洞察力,数学建模的作用越来越受到数学工程界的普遍认可,它以成为现代科技者的必备技能之一。
1.2数学建模的一般步骤
下面结合数学建模的几个环节和数学建模实例,简要介绍MATLAB在数学建模中的一般步骤,模型准备:在建模前要了解问题的实际背景,搜索问题信息,明确求解目的,从而确定用何种数学方法和建立何种数学模型;模型假设:根据实际对象的特征和建模的目的,抓住问题的主要因素,对问题进行合理简化,用精确的语言提出恰当的假设;模型建立:在假设的基础上,利用合理的数学工具刻画各变量、常量之间的数学关系,建立相应的数学结构;④模型求解:利用获取的数据和已有的数学方法,来求解上一步的数学问题,对模型的参数进行相应计算⑤模型分析:对所建立的模型的思路进行阐述,对所得的结果进行数学上的分析;⑥模型检验:将模型与实际情况进行比较,以此来检验模型的准确性、合理性,如果不符合实际情况需重新建立模型;⑦模型的推广:在现有的模型基础上,对模型进行更加全面的考虑,使模型更能反映实际情况。
2建模实例
由于MATLAB软件具有很强的数据处理和数据可视化功能,同时具备有操作方便的特点,所以当把MATLAB软件运用在数学建模里时,必将提高数学建模的质量和效率,并能起到事倍功半的效果,下面以2014年高教杯全国大学生数学竞赛A题为例来说明MATLAB软件在数学建模里的重要作用。
2014年高教杯全国大学生数学竞赛题目A题是嫦娥三号软着陆轨道设计与优化问题,嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车,嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略问题。在卫星着路的过程中,不考虑主减速段,完全由姿态调整发动机控制水平运动的阶段为粗避障和精避障段,为了节省燃料,应尽量减少卫星在空中的悬停时间。题目中附件三、附件四分别是距月球表面2400米和100米的高程图,根据高程图中的数据信息,我们可以确定最佳的降落位置。我们可以运用MATLAB软件对于高程图的进行处理,首先用MATLAB软件软件中imread命令将其转化为矩阵形式,然后分别做出月球表面立体的三维图和等高线二维平面图,建立数值地形的不同区域,我们可以通过三维图很直观的观察到月球表面具体地形、地貌,通过等高线二维图形,我们可以清楚地看到月球表面地势高低变化成度,从而确定卫星降落地最佳地点。本文只以100米高程图作为例子演示,具体地操作程序以及输出结果如下:
g=imread(‘附件4距100m处的高程图.tif’);
%用imread函数读取图片信息,注意路径要以电脑中图片的实际路径为准
gg=double(g);
%将图片中的信息转化为数值矩阵信息以便以MATLAB软件进行后期处理
gg=gg-1/255;
%将彩色值转为0-1的渐变值以便于观察
[x,y]=size(gg);
%取原图大小
[X,Y]=meshgrid(1:y,1:x);
%以原图大小构建网格
mesh(X,Y,gg);
%呈现三维地貌图
contour(X,Y,gg);
%呈现月球表面等高线图
gridon
3结论
从本文数学建模实例可以看出,在建模时,当需要对图片、表格、数据进行处理时,我们可以运用MATLAB软件进行解决,MATLAB凭借其丰富的库函数和工具箱,能够非常方便的解决这些问题,并且将数据可视化,结果清晰明了,显示出其他软件无法比拟的优势,除此之外,MATLAB软件在数据分析、数值计算以及规划、预测等多方面数学问题都占有绝对的优势,因此,我们提倡将MATLAB软件引入教学中去,让更多的学生在建模前了解其相关知识,进行软件操作,这不仅能够激发学生的建模积极性,而且可以使学生掌握一项技能,同时也提高学生动手实践能。
数学建模优秀论文范文3
Ⅰ、问题的重述
石油是重要的战略资源,进入新世纪以来石油价格一路高涨且波动频繁,油价成为全球关注的焦点。成品油的合理定价对国家经济发展及社会和谐稳定具有重要的意义,还关系到民生,石油储备等多方面的问题。石油价格的变化深深影响着经济和社会的发展,由于石油的特殊战略地位,油价的波动已经成为各国政府、学者以及业界关注的焦点,每次油价上涨更是吸引了各方广泛的关注。
统计数据表明,自2009年以来,国内成品油价格共调整17次,其中12次上调,5次下调。以北京为例,93号汽油的零售价也从5.33元/升上涨至目前的
8.33元/升,涨幅约为56%。油价的上涨引起了广大消费者的不满,每到成品油调价窗口期,油价话题总会引发热议;与此同时,现行的成品油定价机制也遭到了广泛质疑,定价机制改革的呼声也日益高涨。成品油价格究竟多少合适,随之成为一个敏感而又复杂的问题。当前我国成品油定价体制是否依然合理?现在的问题就是如何综合考虑各种影响成品油价格的因素如原油价格等提出一个合理的成品油定价机制。
试根据中国国情,收集相关数据,综合考虑各种因素,并通过数学建模的方法,就成品油定价机制进行定性分析与定量计算,得出明确、有说服力的结论。最后,根据建模分析计算的结果,给国家发改委写一份报告,提出自己的新成品油价格机制,并说明新机制的优越性。
Ⅱ、问题的分析及思路
2.1、问题分析
石油价格过高会影响国民经济的积极性,影响社会稳定,过低又会影响企业的正常运转等,还需要考虑到与国际油价接轨以及我国特殊的国情,以及我国现行的石油价格机制所存在的不合理问题。
现行成品油价格机制是否合理,需要一个量化指标来判定,然而影响成品油定价机制的指标的相关关系和所反应结果的准确度都是模糊不清的。应此我们需要基于FCE模糊综合评判算法建立一个评价模型,还需要基于AHP层次分析法得到在各级别指标的权重向量。同时确立了成品油定价机制合理程度的等级域,并且将等级数值化。而后,利用正态分布函数,建立了关于等级制度的隶属度函数,
并且基于该函数得到了评价指标与等级的模糊关系矩阵。之后将各层评价指标的权重与模糊关系矩阵进行模糊算子处理得到综合评价矩阵,最终得到成品油定价机制合理程度的量化评估。
在评价了现行的机制不合理之后,需要提出更合理的机制。因此我们需要建立一个基于原油成本法的新成品油价格估算方法得模型。由于缺乏相关数据,我们需要使用前人的经验权重系数,用新的估算方法得到了成品油基准价格。由于经验权重系数准确性有待商榷,因此需要再考虑其他影响因素在基准成品油价格上进行调整得到最终成品油价格估算机制。
2.2、问题思路:
用下面的流程图表示我们的建模思路
建立评价现有石油价格体制的模糊综合评价模型
Ⅲ、问题的假设
一、只考虑对成品油价影响较大的五个因素,即:原油价格、企业成本、供
求关系、承受能力、社会公平。对于每一个因素,如果其受其他因素的影响,则对该因素单独进行分析。本模型我们假设只有社会公平受地域分布、收入水平、当地物价影响。
二、假设影响成品油定价的五个因素之间没有影响,各自独立,且影响社会
公平的三个因素也是独立的,不会对其他因素造成影响。
三、假设石油资源稀缺程度和环境因素及能源效率不影响成品油定价,或者
说其影响的力度较小,忽略掉其影响。
Ⅳ、符号说明
Ⅴ、模型的建立及求解
模型一:
基于模糊综合评价模型(FCE)的我国现行成品油定价机制评价及验证模型
1.1模糊综合评价算法概述
模糊综合评价是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,进行综合评价的一种方法,其特点是评价结果不是绝对地肯定或否定,而是以一个模糊集合来表示。隶属度与隶属度矩阵是模糊综合评价的关键性概念。对于论域(即研究范围)U中任意元素x,都有A(x)∈
[0,1]与之相对应,则称A为U上的模糊集,而A(x)即称为x对A(A通常称之为评价集)的隶属度。隶属度A(x)越接近于1,表示x属于A的程度越高,A(x)越接近于0表示x属于A的程度越低。隶属度矩阵则为多个元素xi对于Ai的模糊关系矩阵,矩阵元素r即为x对于A的隶属度。模糊综合评级中通常分有目ijij
标层和指标层,通过指标层与评价集之间的模糊关系矩阵(即隶属度矩阵)可以得到对于目标层对于评价集的隶属度向量,从而得到目标层的综合评价结果。
1.2模糊综合评价模型求解
1.2.1基于我国现行成品油定价机制的模型分析
我国现行成品油定价机制的提出设计多方面因素,可以采用原油价格、企业成本、供求关系、承受能力、社会公平这五个指标来进行衡量。将这五个指标定为一级指标。而这五个指标无法定量的给出对我国现行成品油定价机制衡量的实际标准,而且它们之间的相关关系和所反应结果的准确度都是模糊不清的。在社
会公平这一指标下,又有地域分布、收入水平、当地物价这三个二级指标。它们对于成品油定价的定义,评价能力和它们之间的相互关系也是模糊不清的。综上所述,面对我国现行成品油定价机制的问题采用模糊综合评价方法来衡量是较为恰当的。
为此需要建立一个影响力评价等级集合V={V}来对成品油价格标准进行等i
级评价,并且构造出单指标因素对于各评价等级的隶属函数F(x),建立模糊关系矩阵R,同时需进行相应的基本操作,对各指标进行权重衡量,结合隶属度矩阵求出综合评价矩阵。
在计算各级指标权重方面,考虑到了传统的模糊综合评价中的权重通常由专家指定或者根据调查结果判定,这样导致主观因素太大,权重定量不够精确。为避免这些不利因素,在这个模型中采用层次分析法求出各指标权重大小。
1.2.2模型假设
1)忽略竞争程度、资源稀缺以及能源效率和环保节能等因素对于模型的影响。
2)假设企业成本、企业成本、供求关系、承受能力、社会公平等因素在原油价格波动时一个原油价格的上涨或者下降过程中这段时间内保持不变。
3)假设现行成品油定价机制得到了良好的实施,国内成品油价格基本上与机制定义的价格相符。
1.2.3指标的层次划分
U??u1,u2,u3,u4,u5?
建立具有准则层和子准则层这两层的模糊综合评价分析模型。
指标层次表(表1)
数学建模论文范文篇二:数学建模优秀论文模板(经典中的经典)
承诺书
我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名):1.指导教师或指导教师组负责人(打印并签名):
日期:年月日
赛区评阅编号(由赛区组委会评阅前进行编号):
2010高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
题目(黑体不加粗三号居中)
摘要(黑体不加粗四号居中)
(摘要正文小4号,写法如下)内容要点:
1、研究目的:本文研究……问题。2、建立
模型思路、:首先,本文……。
然后针对第一问……问题,本文建立……模型:
在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型3、求解思路,使用的方法、程序
针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。
4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型
检验等)
5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性6、最后,本文通过改变,得出什么模型。
关键词:结合问题、方法、理论、概念等
一、问题重述(第二页起黑四号)
内容要点:
1、问题背景:结合时代、社会、民生等2、需要解决的问题问题一:问题二:问题三:
二、问题分析
内容要点:什么问题、需要建立什么样的模型、用什么方法来求解
三、模型假设与约定
内容要点:
1、根据题目中条件作出假设2、根据题目中要求作出假设写作要求:
细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。将一些问题理想化、简单化。
1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解
2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考
3、假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量的函数形式,也可以参考其他资料由类推得到。对于后者应指出参考文献的相关内容
四、符号说明及名词定义
内容要点:包括建立方程符号、及编程中用到的符号等
五、模型建立
内容要点:
数学建模优秀论文范文4
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1]谢凤艳,杨永艳。高等数学教学中融入数学建模思想[J]。齐齐哈尔师范高等专科学校学报,2014(02):119—120。
[2]李薇。在高等数学教学中融入数学建模思想的探索与实践[J]。教育实践与改革,2012(04):177—178,189。
[3]杨四香。浅析高等数学教学中数学建模思想的渗透[J]。长春教育学院学报,2014(30):89,95。
[4]刘合财。在高等数学教学中融入数学建模思想[J]。贵阳学院学报,2013(03):63—65。
数学建模优秀论文范文5
摘要:
将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:
数学建模;高等数学;教学研究
一、引言
建模思想使高等数学教育的基础与本质。从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状
高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性
第一,能够激发学生学习高数的兴趣。建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。例如,在讲解微分方程时,可以引入一些历史上的一些著名问题,如以Vanmeegren伪造名画案为代表的赝品鉴定问题、预报人口增长的Malthus模型与Logistic模型等。这样,才能激发出学生对高等数学的兴趣,并积极投入高等数学的学习中来。
第二,能够提高学生的数学素质。社会的高速发展不断要求学生向更全面、更高素质的方向发展。这就要求学生不仅要懂得专业知识,还要能够将专业知识运用到实际生活中,拥有解决问题的头脑和实际操作的技能。这些其实都可以通过建模思想在高等数学课堂中实现。高等数学的包容性、逻辑性都很强。将建模思想融入高等数学的教学中,既能提高学生的数学素质,还能锻炼学生综合分析问题,解决问题的能力。通过理论与生活实践相结合,达到社会发展的要求,提高自身的社会竞争力。
第三,能够培养学生的综合创新能力。“万众创新”不仅仅是一个口号,而应该是现代大学生应该具备的一种能力。将数学建模思想融入高等数学教学中,能让大学生从实际生活出发,多方位、多角度考虑问题,提高学生的创新能力。学生的潜力是可以在多次的建模活动中挖掘出来的。因此教师应多组织建模活动,让学生从实际生活中组建材料,不断创新思维,找到解决问题的方式与方法。
四、将建模思想融入高等数学的实践方法
第一,转变教学理念。改变传统教学思想与教育方式,提高学生建模的积极性,增强学生对建模方式的认同。教师不能只是单一的讲解理论知识,还需要引导学生亲自体验,从互动的教学过程中,理解建模思想的重要性。
第二,在生活问题中应用建模思想。其实,很多日常生活中的很多例子,都是可以解决课堂上的问题的。数学是来源于生活的。作为教师,应该主动引领学生参与实践活动,将课本的知识尽量与日常问题联系到一起,发动学生主动用建模思想解决问题,提高创新能力,从不同的角度,以不同的方式提高解决问题的能力。例如,学校要组织元旦晚会,需要学生去采购必需品。超市有多种打折的方式,这时候教师就可以引导学生使用建模思想,要求去学生以模型来分析各种打折方式的优缺点,并选择最优惠的方式买到最优质的晚会用品。这样学生才会发现建模的乐趣,并了解如何在生活案例中应用建模思想。
第三,不断巩固和提高建模应用。数学建模思想融入生活实践不是一蹴而就的,而是一个不断实践、循序渐进的过程。人们也不能为了应用建模思想而将日常生活生拉硬套。教师也应该尽可能多地搜集生活中的案例,将建模思想与生活实践更灵活地联系在一起。不断地由浅入深,将建模思想牢牢地印在学生的脑海中。并根据每个学生的独特性,不断开发学生的创新潜力和发散思维能力,提高逻辑思维能力和空间想象力,在实践中巩固深化建模思想。五、结束语综上所述,将建模思想融入高等数学教学中,能显著提高课堂教学质量和学生解决问题的能力,因此教师应从整体上把握高数的教学体系,让学生逐步建立建模思维,不断深化和巩固用建模思想解决问题的能力。只有这样,融入数学建模思想的高等数学的教学效果才会起到应有的作用。
数学建模优秀论文范文6
摘要:
层次分析法是美国学者T.L.Satty于20世纪70年代提出了以定性与定量相结合,系统化、层次化分析解决问题的方法,简称AHP。传统的层次分析法算法具有构造判断矩阵不容易、计算繁多重复且易出错、一致性调整比较麻烦等缺点。本文利用微软的Excel电子表格的强大的函数运算功能,设置了简明易懂的计算表格和步骤,使得判断矩阵的构造、层次单排序和层次总排序的计算以及一致性检验和检验之后对判断矩阵的调整变得十分简单。
关键词:
Excel模型层次分析法
一、层次分析法的基本原理
层次分析法是解决定性事件定量化或定性与定量相结合问题的有力决策分析方法。它主要是将人们的思维过程层次化、,逐层比较其间的相关因素并逐层检验比较结果是否合理,从而为分析决策提供较具说服力的定量依据。层次分析法不仅可用于确定评价指标体系的权重,而且还可用于直接评价决策问题,对研究对象排序,实施评价排序的评价内容。
用AHP分析问题大体要经过以下七个步骤:
(1)建立层次结构模型;
首先要将所包含的因素分组,每一组作为一个层次,按照最高层、若干有关的.中间层和最低层的形式排列起来。对于决策问题,通常可以将其划分成层次结构模型,如图1所示。
其中,最高层:表示解决问题的目的,即应用AHP所要达到的目标。
中间层:它表示采用某种措施和政策来实现预定目标所涉及的中间环节,一般又分为策略层、约束层、准则层等。
最低层:表示解决问题的措施或政策(即方案)。
(2)构造判断矩阵;
设有某层有n个元素,X={Xx1,x2,x3……xn}要比较它们对上一层某一准则(或目标)的影响程度,确定在该层中相对于某一准则所占的比重。(即把n个因素对上层某一目标的影响程度排序。上述比较是两两因素之间进行的比较,比较时取1~9尺度。
用表示第i个因素相对于第j个因素的比较结果,则
A则称为成对比较矩阵
比较尺度:(1~9尺度的含义)
如果数值为2,4,6,8表示第i个因素相对于第j个因素的影响介于上述两个相邻等级之间。
倒数:若j因素和i因素比较,得到的判断值为
(3)用和积法或方根法等求得特征向量W(向量W的分量Wi即为层次单排序)并计算最大特征根λmax;
(4)计算一致性指标CI、RI、CR并判断是否具有满意的一致性。其中RI是
其中
平均随机一致性指标RI的数值:
矩阵阶数34567891011
RI0.51490.89311.11851.24941.34501.42001.46161.491.51
CR=CI/RI,一般地当一致性比率CR<0.1时,认为A的不一致程度在容许范围之内,可用其归一化特征向量作为权向量,否则要重新构造成对比较矩阵,对A加以调整。
(5)层次总排序,如表1所示。
(6)层次总排序一致性检验,如前所述。
(7)根据需要进行调整对于层次单排序结果和层次总排序结果,只要符合满意一致性即随机一致性比例CR≤0.10就可以结束计算并认同排序结果,否则就要返回调整不符合一致性的判断矩阵。
二、层次分析法Excel模型设计过程
案例:某人欲到苏州、杭州、桂林三地旅游,选择要考虑的因素包括四个方面:景色、费用、居住和饮食,用层次分析法选一个适合自己情况的旅游点。
⒈根据题意可以建立层次结构模型如图1所示。
⒉Excel实现过程
⑴将准则层的各因素对目标层的影响两两比较结果输入Excel表格中,进行单排序及一致性检验如图2所示。其中:F4=PRODUCT(B4:E4),表示B4、C4、D4、E4各单元格连乘,复制公式至F7单元格。G4=POWER(F4,1/4),表示将F4单元格的值开4次方,复制公式至G7单元格G8=SUM(G4:G7),表示求和H4=G4/$G$8,复制公式至H7单元格I4=B4*H$4+C4*H$5+D4*H$6+E4*H$7,复制公式至I7单元格J4=I4/H4λmax=AVERAGE(J4:J7)。CI=(J8-4)/(4-1),CR=CI/0.8931=0.0080101<0.1,即通过一致性检验。
⑵按同样的方法分别计算出方案层对景色、费用、居住、饮食的判断矩阵及一致性检验,如图3所示。
⑶层次总排序,由于苏州数值最高,故选择的旅游地为苏州,如图4所示。其中:C44=K14,G44=$C$43*C44,H48={SUM($C$43:$F$43*C48:F48)},注意:这是一个数组函数需按ctrl+shift+enter三键确定。
三、基于Excel的层次分析法模型设计的优势
(1)层次分析法Excel算法以广泛使用的办公软件Excel作为运算平台,无需掌握深奥的计算机专业知识和术语,有很好的推广应用基础。
(2)层次分析法Excel算法的所有计算结果和数据均保留最高位数的精确度,可以不在任何环节进行四舍五入,当然也可以根据需要设置小数位,从而最大限度地减少了误差。
(3)层次分析法Excel算法的计算步骤设计成环环相扣、步步跟踪,步骤设计完毕后,可以按需要填充或变更,其余数据和结果均可以在填充或变更判断矩阵之后立即得出,使得整个运算过程简捷、轻松。另外,相似的矩阵区和计算区可以通过复制完成,只需改动少量单元格。
(4)层次分析法Excel算法将一致性检验也同时计算出来,决策者和判断者可以即时知道自己的判断是否具有满意的一致性并可以随时和简单地进行调整直到符合满意一致性。
(5)如果一致性指标不能令人满意,用本方法可以比较容易地实现对判断矩阵的调整,可以实现对判断的“微调”,使得逼近最大程度的“满意一致性”甚至“完全一致性”而又不必进行繁重运算成为可能。
数学建模优秀论文范文7
一、在高等数学教学中运用数学建模思想的重要性
(1)将教材中的数学知识运用现实生活中的对象进行还原,让学生树立数学知识来源于现实生活的思想观念。
(2)数学建模思想要求学生能够通过运用相应的数学工具和数学语言,对现实生活中的特定对象的信息、数据或者现象进行简化,对抽象的数学对象进行翻译和归纳,将所求解的数学问题中的数量关系运用数学关系式、数学图形或者数学表格等形式进行表达,这种方式有利于培养、锻炼学生的数学表达能力。
(3)在运用数学建模思想获得实际的答案后,需要运用现实生活对象的相关信息对其进行检验,对计算结果的准确性进行检验和确定。该流程能够培养学生运用合理的数学方法对数学问题进行主动性、客观性以及辩证性的分析,最后得到最有效的解决问题的方法。
二、高等数学教学中数学建模能力的培养策略
1.教师要具备数学建模思想意识
在对高等数学进行教学的过程中,培养学生运用数学建模思想,首先教师要具备足够的数学建模意识。教师在进行高等数学教学之前,首先,要对所讲数学内容的相关实例进行查找,有意识的实现高等数学内容和各个不同领域之间的联系;其次,教师要实现高等数学教学内容与教学要求的`转变,及时的更新自身的教学观念和教学思想。例如,教师细心发现现实生活中的小事,然后运用这些小事建造相应的数学模型,这样不仅有利于营造活跃的课堂环境,而且还有利于激发学生的学习兴趣。
2.实现数学建模思想和高等数学教材的互相结合
教师在讲解高等数学时,对其中能够引入数学模型的章节,要构建相关的数学模型,对其提出相应的问题,进行分析和处理。在该基础上,提出假设,实现数学模型的完善。教师在高等数学的教学中融入建模意识,让学生潜移默化的感受到建模思想在高等数学教学中应用的效果。这样有利于提高学生数学知识的运用能力和学习兴趣。例如,在进行教学时,针对学生所学专业的特点,选择科学、合理的数学案例,运用数学建模思想对其进行相应的加工后,作为高等数学讲授的应用例题。这样不仅能够让学生发现数学发挥的巨大作用,而且还能够有效的提高学生的数学解题水平。另外,数学课结束后,转变以往的作业模式,给学生布置一些具有专业性、数学性的习题,让学生充分利用网络资源,自主建立数学模型,有效的解决问题。
3.理清高等数学名词的概念
高等数学中的数学概念是根据实际需要出现的,所以在数学的教学中,教师要引起从实际问题中提取数学概念的整个过程,对学生应用数学的兴趣进行培养。例如在高等数学
教材中,导数和定积分是其中的比较重要的概念,因此,教师在进行教学时,要引导学生理清这两个的概念。比如导数概念是由几何曲线中的切线斜率引导出来的,定积分的概念是由局部取近似值引出的,将常量转变为变量。
4.加强数学应用问题的培养
高等数学中,主要有以下几种应用问题:
(1)最值问题
在高等数学教材中,最值问题是导数应用中最重要的问题。教师在教学过程中通过对最值问题的解题步骤进行归纳,能够有效地将数学建模的基本思想进行反映。因此,在对这部分内容进行教学时,要增加例题,加大学生的练习,开拓学生的思维,让学生熟练掌握最值问题的解决办法。
(2)微分方程
在微分方程的教学中运用数学建模思想,能够有效地解决实际问题。微分方程所构建的数学模型不具有通用的规则。首先,要确定方程中的变量,对变量和变化率、微元之间的关系进行分析,然后运用相关的物理理论、化学理论或者工程学理论对其进行实验,运用所得出的定理、规律来构建微分方程;其次,对其进行求解和验证结果。微分方程的概念主要从实际引入,坚持由浅入深的原则,来对现实问题进行解决。例如,在对学生讲解外有引力定律时,让学生对万有引力的提出、猜想进行探究,了解到在其发展的整个过程中,数学发挥着十分重要的作用。
(3)定积分
微元法思想用途比较广泛,其主要以定积分概念为基础,在数学中渗入定积分概念,让学生对定积分概念的意义进行分析和了解,这样有利于在对实际问题进行解决时,树立“欲积先分”意识,意识到运用定积分是解决微元实际问题的重要方法。教师在布置作业题时,要增加该问题的实例。
三、结语
总之,在高等数学中对学生的数学建模能力进行培养,让学生在解题的过程中运用数学建模思想和数学建模方法,能够有效地激发学生的学习兴趣,提高学生的分析、解决问题的能力以及提高学生数学知识的运用能力。
数学建模优秀论文范文8
一、数学建模与数学建模意识
数学建模是对实际问题本质属性进行抽象而又简洁刻划的数学符号、数学式子、程序或图形,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。而应用各种知识从实际问题中抽象、提炼出数学模型的过程,我们称之为数学建模。它的灵魂是数学的运用,它就象阵阵微风,不断地将数学的种子吹撒在时间和空间的每一个角落,从而让数学之花处处绽放。
高中数学课程新标准要求把数学文化内容与各模块的内容有机结合,数学建模是其中十分重要的一部分。作为基础教育阶段――高中,我们更应该重视学生的数学应用意识的早期培养,我们应该通过各种各样的形式来增强学生的应用意识,提高他们将数学理论知识结合实际生活的能力,进而激发他们学习数学的兴趣和热情。
二、高中数学教师必须提高自己的建模意识、积累自己的建模知识。
我们在教学内容和要求上的变化,更意味着教育思想和教学观念的更新。数学建模源于生活,用于生活。高中数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把高中数学知识应用于现实生活。作为高中数学教师,在日常生活上必须做数学的有心人,不断积累与数学相关的实际问题。
三、在数学建模活动中要充分重视学生的主体性
提高学生的主体意识是新课程改革的基本要求。在课堂教学中真正落实学生的主体地位,让学生真正成为数学课堂的主人,促进学生自主地发展,是现代数学课堂的重要标志,是高中数学素质教育的核心思想,也是全面实施素质教育的关键。高中数学建模活动旨在培养学生的探究能力和独立解决问题的能力,学生是建模的主体,学生在进行建模活动过程中表现出的主体性表现为自主完成建模任务和在建模活动中的互相协作性。中学生具有好奇、好问、好动、好胜、好玩的心理特点,思维开始从经验型走向理论型,出现了思维的独立性和批判性,表现为喜欢独立思考、寻根究底和质疑争辩。因此,教师在课堂上应该让学生充分进行自主体验,在数学建模的实践中运用这些数学知识,感受和体验数学的应用价值。
教师可作适当的点拨指导,但要重视学生的参与过程和主体意识,不能越俎代庖,目的是提高学生进行探究性学习的能力、提高学生学习数学的兴趣。
四、处理好数学建模的过程与结果的关系
我国的中学数学新课程改革已进入全面实施阶段。新的高中数学课程标准强调要拓宽学生的数学知识面,改善学生的学习方式,关注学生的学习情感和情绪体验,培养学生进行探究性学习的习惯和能力。数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是运用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。五、数学建模教学与素质教育
数学建模问题贴近实际生活,往往一个问题有很多种思路,有较强的趣味性、灵活性,能激发学生的学习兴趣,可以触发不同水平的学生在不同层次上的创造性,使他们有各自的收获和成功的’体验。由于给了学生一个纵情创造的空间,就为学生提供了展示其创造才华的机会,从而促进学生素质能力的培养和提高,对中学素质教育起到积极推动作用。
1.构建建模意识,培养学生的转换能力
恩格斯曾说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”由于数学建模就是把实际问题转换成数学问题,因此如果我们在数学教学中注重转化,用好这根有力的杠杆,对培养学生思维品质的灵活性、创造性及开发智力、培养能力、提高解题速度是十分有益的。学生对问题的研究过程,无疑会激发其学习数学的主动性,且能开拓学生的创造性思维能力,养成善于发现问题、独立思考的习惯。教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识。
2.注重直觉思维,培养学生的想象能力
众所周知,数学史上不少的数学发现都来源于直觉思维,如笛卡尔坐标系、歌德巴赫猜想等,应该说它们不是任何逻辑思维的产物,而是数学家通过观察、比较、领悟、突发灵感发现的。通过数学建模教学,使学生有独到的见解和与众不同的思考方法,如善于发现问题,沟通各类知识之间的内在联系等是培养学生创新思维的核心。七年级的教材里,以游戏的方式编排了简单而有趣的概率知识,如转盘游戏,扔硬币来验证出现正面或反面的概率等等。通过有趣的游戏,激起了学生学习的兴趣,并了解到概率统计知识在社会中应用的广泛性和重要性。
3.灌输“构造”思想,培养学生的创新能力
“一个好的数学家与一个蹩脚的数学家之间的差别,就在于前者有许多具体的例子,而后者则只有抽象的理论。”我们前面讲到,“建模”就是构造模型,但模型的构造并不是一件容易的事,又需要有足够强的构造能力,而学生构造能力的提高则是学生创造性思维和创造能力的基础:创造性地使用已知条件,创造性地应用数学知识。
当然,数学建模在现在的高中数学教育中的地位和作用更加重要。但究竟如何在高中搞好数学建模活动,更好地发挥数学建模的作用,仍将是一个漫长而曲折的过程,是我们广大高中学教师和教育工作者所思考和探索的问题。
数学建模优秀论文范文9
一、小学数学建模
"数学建模"已经越来越被广大教师所接受和采用,所谓的"数学建模"思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为"数学建模",其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位
1.定位于儿童的生活经验
儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。"数学建模"要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式
小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使"数量关系"与数学原型"一乘两除"结合起来,并且使学生利用抽象与类比的思维方法完成了"数量关系"的"意义建模",从而创建了完善的认知体系。
三、小学"数学建模"的教学策略
1.培育建模意识
当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是"生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释".培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。
2.体验建模过程
在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己"创建"新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备"模型"思想,处理问题的过程能具备数学家的"模型化"特点,从而使"模型思想"影响其生活的各个方面。
3.在数学建模中促进自主性建构
要使"知识"与"应用"得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼"现实问题"的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。
我们以《比较》这课程内容为例,我们通过"建模"这一教学方法,培养学生对">""<"和"="的掌握与使用,进而使学生明确了解"比较"的真正含义。首先,利用公园或者学校等地方的跷跷板为素材,让学生了解自己的哪个伙伴被压上去,哪个伙伴被压下来;然后让班级的高矮不同的同学进行身高比较。最后将上面这些情景在课堂上通过多媒体手段展现出来,由于这些情景都是学生曾亲身体验过的,此时再叫他们去做"重量"或者"高度"的比较,他们就可以轻松的掌握">""<"和"="等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的创建其数学模型,提升他们自主建模的信心。
四、总结
数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。
数学建模优秀论文范文10
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文范文,欢迎阅读参考。
大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和创新思维,提高其素质和创新能力,实现向素质教育的转化和深入。
一、数学建模的含义及特点
数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学方法及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。
1.准备阶段
主要分析问题背景,已知条件,建模目的等问题。
2.假设阶段
做出科学合理的假设,既能简化问题,又能抓住问题的本质。
3.建立阶段
从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。
4.求解阶段
对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。
5.验证阶段
用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。
二、加强数学建模教育的作用和意义
(一)加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质
数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题,因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。
(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力
数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。
(三)加强数学建模教育有助于培养学生的创造性思维和创新能力
所谓创造力是指"对已积累的知识和经验进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、记忆力、思考力、想象力四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。
很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].
(四)加强数学建模教育有助于提高学生科技论文的撰写能力
数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。
(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].
三、开展数学建模教育及活动的具体途径和有效方法
(一)开展数学建模课堂教学
即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:
案例的选取和课堂教学的组织。
教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。
1.代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。
2.原始性:来自媒体的信息,企事业单位的报告,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。
3.创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。
案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].
(二)开展数模竞赛的专题培训指导工作
建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。
(三)建立数学建模网络课程
以现代网络技术为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]
(四)开展校内数学建模竞赛活动
完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近20年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。
如2008年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖—高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约1万多个本科参赛队中脱颖而出的。又如2014年我校57队参加全国大学生数学建模竞赛,43队获奖,获奖比例达75%,创历年之最。
(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛
全国大学生数学建模竞赛创办于1992年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。
四、结束语
数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。
参考文献:
[1]辞海[M].上海辞书出版社,2002,1:237.
[2]许梅生,章迪平,张少林。数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.
[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.
[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.
[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.
[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.
数学建模优秀论文范文11
大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种教学方法运用到数学教学中。
对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者总结了数学建模的概念以及运用策略。
一、数学建模的概念
想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。
二、在小学数学教学中运用数学建模的策略
1.根据事物之间的共性进行数学建模
想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。
教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。
2.认识建模思想的本质
建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。
建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。
3.发挥教材在数学建模上的作用
教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。
数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。
感谢您花时间阅读本文。如果您觉得数学建模优秀论文范文这篇文章对您有所帮助,我们非常希望您能够将其分享给更多的人。最后我们将继续努力,为您提供更多有价值的内容。祝您生活愉快!
本文由用户Linda Taylor分享,如有侵权请联系。如若转载,请注明出处:http://www.yunpanclub.com/63900.html