数学小学知识点总结(18篇)

数学小学知识点总结

数学小学知识点总结1

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

  (2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b 219

  补充:

  1、相邻两个计数单位之间的进率是10。记:一个一个地数,10个一是( )。一十一十地数,10个十是( )。一百一百地数,10个一百是( )。一千一千地数,10个一千是( )。

  2.在数位顺序表中,从右边起,第一位是(个位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(万位)。

  3、数的组成:就是看每个数位上是几,就有几个这样的计数单位组成。

  例:2647=( )+( )+( )+( )

  4、用估算策略解决问题。

  96页 例13(估大)

  练习19 第8题(估小)

  第八单元 克、千克

  1.(千克)和(克)都是国际上通用的质量单位。计量比较重的物品,常用“千克”(kg)作单位。

  2、称较轻的物品的质量时,用“克”作单位;称较重的物品的质量时,用“千克”作单位。

  3、一个两分的硬币约是1克。两袋500克的盐约是1千克。

  4、1千克=1000克 1kg=1000g.进率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、

  1斤=10两、1两=50克)

  5、计算或者比较大小时,如果单位不同,就需要把单位统一。一般统一成单位“克”。

  估计物品有多重,要结合物品的大小、质地等因素。

数学小学知识点总结2

  (一)口算除法

  1、整十数除整十数或几百几十的数的口算方法。

  (1)算除法,想乘法;比如60÷30=( )就可以想(2)×30=60

  (2)利用表内除法计算。利用除法运算的性质:将被除数和除数同时扩大或缩小相同的倍数,商不变。如:200÷50想20÷5=4,所以200÷50=4。

  2、两位数除两位数或三位数的估算方法:除法估算一般是把算式中不是整十数或几百几十的数用“四舍五入”法估算成整十数或几百几十的数,再进行口算。注意结果用“≈”号。

  (二)笔算除法

  1、除数是两位数的笔算除法计算方法:从被除数的高位除起,先用除数试除被除数的前两位,如果前两位数比除数小,就看前三位。除到被除数的哪一位,商就写在那一位的上面。每次除后余下的数必须比除数小。

  2、除数不是整十数的两位数的除法的试商方法:如果除数是一个接近整十数的.两位数,就用“四舍五入”法把除数看做与它接近的整十数试商,也可以把除数看做与它接近的几十五,再利用一位数的乘法直接确定商。

  3、商一位数:

  (1)两位数除以整十数,如:62÷30;

  (2)三位数除以整十数,如:364÷70

  (3)两位数除以两位数,如:90÷29(把29看做30来试商)

  (4)三位数除以两位数,如:324÷81(把81看做80来试商)

  (5)三位数除以两位数,如:104÷26(把26看做25来试商)

  (6)同头无除商八、九,如:404÷42(被除数的位和除数的位一样,即“同头”,被除数的前两位除以除数不够除,即“无除”,不是商8就是商9。)

  (7)除数折半商四五,如:252÷48(除数48的一半24,和被除数的前两位25很接近,不是商4就是商5。)

  4、商两位数:(三位数除以两位数)

  (1)前两位有余数,如:576÷18

  (2)前两位没有余数,如:930÷31

  5、判断商的位数的方法:

  被除数的前两位除以除数不够除,商是一位数;被除数的前两位除以除数够除,商是两位数。

  (三)商的变化规律

  1、商变化:

  (1)被除数不变,除数乘(或除以)几(0除外),商就除以(或乘)相同的数。

  (2)除数不变,被除数乘(或除以)几(0除外)商也乘(或除以)相同的数。

  2、商不变:被除数和除数同时乘(或除以)相同的数(0除外),商不变。

  (四)简便计算:同时去掉同样多的0,如9100÷700=91÷7=13

数学小学知识点总结3

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

  (2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数混合运算

  1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、求比一个数多(或少)几分之几的数是多少的解题方法

  (1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;

  (2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。

数学小学知识点总结4

  一、学习目标:

  1.知道生活中有比万大的数;认识计数单位“万、十万、百万、千万和亿”,类推每相邻两个计数单位之间的关系,知道数级、数位;

  2使学生认识射线,直线,能识别射线、直线和线段三个概念之间的联系和区别;认识角和角的表示方法,知道角的各部分名称;

  3,在理解的基础上,掌握整数乘法的口算方法;培养类推迁移的能力和口算的能力;

  4.结合生活情境,通过自主探究活动,初步认识平行线、垂线;独立思考能力与合作精神得到和谐发展;

  5.在理解的基础上,掌握用整十数除商是一位数的口算方法;培养类推迁移的能力和抽象概括的能力。

  二、学习难点:

  1.认识计数单位“万、十万、百万、千万和亿”;掌握每相邻两个计数单位之间的关系;

  2.角的意义;射线、直线和线段三者之间的关系;

  3.掌握整数乘法的口算方法;培养学生养成认真思考的良好学习习惯;

  4.初步认识平行线与垂线;理解永不相交的含义;

  5.掌握用整十数除商是一位数的口算方法;培养学生养成认真计算的良好学习习惯。

  三、知识点概括总结:

  1.亿以内的数的认识:

  十万:10个一万;

  一百万:10个十万;

  一千万:10个一百万;

  一亿:10个一千万。

  2.数级:数级是为便于人们记读阿拉伯数的一种识读方法,在位值制(数位顺序)的基础上,以三位或四位分级的原则,把数读,写出来。

  通常在阿拉伯数的书写上,以小数点或者空格作为各个数级的标识,从右向左把数分开。

  3.数级分类:

  (1)四位分级法:即以四位数为一个数级的分级方法。

  我国读数的习惯,就是按这种方法读的。如:万(数字后面4个0)、亿(数字后面8个0)、兆(数字后面12个0,这是中法计数)……。这些级分别叫做个级,万级,亿级……。

  (2)三位分级法:即以三位数为一个数级的分级方法。

  这西方的分级方法,这种分级方法也是国际通行的分级方法。如:千,数字后面3个0、百万,数字后面6个0、十亿,数字后面9个0……。

  4.数位:数位是指写数时,把数字并列排成横列,一个数字占有一个位置,这些位置,都叫做数位。

  从右端算起,第一位是“个位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“万位”,等等。

  这就说明计数单位和数位的概念是不同的。

  5.数的产生:

  阿拉伯数字的由来:古代印度人创造了阿拉伯数字后,大约到了公元7世纪的时候,这些数字传到了阿拉伯地区。到13世纪时,意大利数学家斐波那契写出了《算盘书》,在这本书里,他对阿拉伯数字做了详细的介绍。后来,这些数字又从阿拉伯地区传到了欧洲,欧洲人只知道这些数字是从阿拉伯地区传入的,所以便把这些数字叫做阿拉伯数字。以后,这些数字又从欧洲传到世界各国。

  阿拉伯数字传入我国,大约是13到14世纪。由于我国古代有一种数字叫“筹码”,写起来比较方便,所以阿拉伯数字当时在我国没有得到及时的推广运用。本世纪初,随着我国对外国数学成就的吸收和引进,阿拉伯数字在我国才开始慢慢使用,阿拉伯数字在我国推广使用才有100多年的历史。阿拉伯数字现在已成为人们学习、生活和交往中最常用的数字了。

数学小学知识点总结5

  1.认识人民币的单位元、角、分和它们的十进关系,认识各种面值的人民币,能看懂物品的单价,会进行简单的计算。

  2.结合自己的生活经验和已经掌握的100以内数的知识,学习、认识人民币,一方面初步知道人民币的`基本知识和懂得如何使用人民币,提高社会实践能力;另一方面加深对100以内数的概念的理解。

  3.体会数概念与现实生活的密切联系。

  4.认识各种面值的人民币,并会进行简单的计算。

  5.使学生认识人民币的单位元、角、分,知道1元=10角,1角=10分。

  6.通过购物活动,使学生初步体会人民币在社会生活、商品交换中的功能和作用并知道爱护人民币。

数学小学知识点总结6

  今天,我们六年级数学组的全体老师在自己的办公室进行了开学以来数学第一次月考的试卷分析会,张主任和吴校长参与了这次活动。在分析会上,我们九位教师分别发言,阐述了班级学生的答题情况,分析了优缺点,指出存在的问题,提出了改进的措施。综合老师们发言情况和领导给予的建议和要求以及自己的教学思考,总结记录如下几点:

  1.试题难度适中,容量大,做到全面考查,突出重点,灵活应用。表面上看似简单,实际上个别的试题蕴含着答题的技巧,考查学生的灵活解决问题的能力。试题出的特别好!这是大家的共同感受。

  2.注重计算能力的培养。在平日里强化简算意识,学会“讨巧”。这样既能节省时间又有利于提高计算的准确性。

  3.提倡六年级学生列综合算式,有利于培养学生的数学思维。对于学困生可以降低要求。

  4.提高学生的审题能力,做到举一反三,训练思维的灵活性。

  5.注重课堂教学,在充分备课的前提下向40分钟要质量,深入挖掘研读教材,把握重点、难点、考点、能力训练点,给学生准确直接的教学经验,其实这就是捷径和高效。

  6.对于班级的学生要分层对待,特别是学困生较多的班级,更应该讲求方法努力改变班级现状,才能使我们的教学立于不败之地,变不利为有利。

  7.教材有所变化,知识体系有所变更,年组增添了新生力量,区数学教研员有所变动,这些都是我们面临的新的挑战。每个人要做好充分的准备,要用扎实的教学功底为学生做好服务,让他们顺利圆满地完成小学毕业考试,用我们的责任和智慧帮助学生书写一份满意的答卷!

数学小学知识点总结7

  第一章————除法

  1、用乘法口诀做除法,余数一定要比除数小;

  2、应用题中,除数和余数的单位不一样;

  商的单位是问题的单位,余数的单位和被除数的单位相同;

  3、解决生活问题,如提的问题是“至少需要几条船?”,用进一法(用商加1)”,乘船、坐车、坐板凳等,读懂题目再作答。

  第二章————方向与位置(认识方向)

  1、地图上的方向口诀:上北下南,左西右东;

  辨认方向时要画方向标。

  2、“小猫在小狗的()方,()在小狗的东面”,是以小狗家为中心点,画出方位坐标,确定方向;

  “小猪在小马的()方”,“小马的()方是小猪”,是以小马家为中心点,画出方位坐标,确定方向。

  3、太阳早上从东边升起,西边落下;

  指南针一头指着(),一头指着()。小明早上面向太阳时,他的前面是(),后面是(),左面是(),右面是()

  4、当吹东南风时,红旗往()飘;

  吹西北风时,红旗往()飘。

  第三章————生活中的大数(认识10000以内的数)

  1、计数器上从右边数起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左边是()位,右边是()位。

  2、一个四位数最高位是()位,它的千位是5,个位是2,其他的数位是0,它是()。

  3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。

  4、由三个千,五个一组成的数是(),由9个一,两个百和一个千组成的数是()。

  5、读数时,要从高读起,中间有一个或两个0,都只读一个0个“零”;

  末尾不管有几个“0”,都不读;

  写数,末尾不管有几个0,都不读。写数时,从高位写起,按照数位顺序表写,中间或末尾哪一位上没有数,就写“0”占位。

  6、10个十是(),10个一百是(),10个一千是(),100个一百是()。10000里面有()个百,1000里面有()个十。

  7、最大的三位数是(),最小的三位数是()。最大的四位数是(),最小的四位数是()。

  8、比较大小时,先比较位数,位数多的数就大,位数少的数就小;

  位数相同时,从最高位开始比较,最高位上的数字相同的,就比下一位,直到比出大小。从大到小用“>”,从小到大用“<”。

  第四章————测量1、毫米(mm)、厘米(cm)、分米(dm)、米(m),相邻单位之间的进率是“10”;

  2、1米=10分米,1分米=10厘米,1厘米=10毫米,1米=100厘米,1分米=100毫米,1000米=1千米;

  3、长度单位比较大小,首先要观察单位,换成统一的单位之后才能比较;

  4、长度单位的加减法,米加米,分米加分米…….就是把相同的单位进行加减。

  第五章————加与减1、口算整百加减整百时,想成几个百加减几个百,加减整十数的算理也相同。

  2、计算时要注意:(1)、相同数位要对齐,从个位算起。(2)、计算加法时,哪一位相加满十,要向前一位“进一”。(3)、计算减法时,哪一位不够减时,要向前一位“借1”,但是不要忘记退位时要减1;

  3、在估算中,如果估算到百位,就看十位数是多少,如果十位上的数大于5,则百位进1,十位和个位舍去,变为0,如估算678,就变为700;

  如果十位上的数小于5,则百位不变,十位和个位舍去,变为0,如估算607,就变为600;

  4、加数+加数=和一个加数=和-另一个加数如:()+156=368(用368-156计算)280+()=760(用760-280计算)

  5、被减数-减数=差被减数=减数+差减数=被减数-差如:()-156=368(用156+368计算)

  980-()=760(用980-760计算)

  6、加法的验算方法:(1)交换加数的位置,看和是否相同,(2)用和减去其中一个加数,看是否等于另一个加数;

  7、减法的.验算方法:(1)用被减数减去差,看结果是否等于减数,(2)用减数加上差,看结果是否等于被减数。注意:运算时不要抄错数,也不要直接把验算结果抄上。

  第六章————认识角1、每个角都是由1个顶点和2条边组成;

  2、按角的大小,将角分为锐角、直角、钝角,所有的直角都相等,比直角小的是锐角,比直角大的是钝角。要知道一个角是什么角,可以用三角板上的直角比一比。

  3、比较角的大小时要注意:角的大小与边的长短无关,与角的张口大小有关,张口越大角就越大;

  4、正方形有四个直角,四条边都相等;

  长方形有四条边,四个直角,长方形的对边相等;

  5、平行四边形有四条边,有2个锐角,2个钝角,对边相等,对角相等。

  第七章————时、分、秒1、钟面上有12个大格,每个大格里有5个小格,一共有60个小格;

  2、秒针走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分钟;

  3、分针走一小格是1分,走一大格是5分,走一圈是60分,也就是1小时;

  4、时针走一大格是1小时,走一圈是12小时;

  5、时、分、秒相邻单位的进率是60;

  1时=60分1分=60秒6、比较时间,首先要观察,统一单位之后再比较大小。

  7、时间的加减:分减分,时减时,当分不够减时,要向前一位借1,化成60,再相加减;

  第八章————统计1、记录并学会计算,谁多,谁少。

数学小学知识点总结8

  (一)笔算两位数加法,要记三条

  1、相同数位对齐;

  2、从个位加起;

  3、个位满10向十位进1。

  (二)笔算两位数减法,要记三条

  1、相同数位对齐;

  2、从个位减起;

  3、个位不够减从十位退1,在个位加10再减。

  (三)混合运算计算法则

  1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;

  2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;

  3、算式里有括号的要先算括号里面的。

  (四)四位数的读法

  1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;

  2、中间有一个0或两个0只读一个“零”;

  3、末位不管有几个0都不读。

  (五)四位数写法

  1、从高位起,按照顺序写;

  2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。

  (六)四位数减法也要注意三条

  1、相同数位对齐;

  2、从个位减起;

  3、哪一位数不够减,从前位退1,在本位加10再减。

  (七)一位数乘多位数乘法法则

  1、从个位起,用一位数依次乘多位数中的每一位数;

  2、哪一位上乘得的积满几十就向前进几。

  (八)除数是一位数的除法法则

  1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;

  2、除数除到哪一位,就把商写在那一位上面;

  3、每求出一位商,余下的数必须比除数小。

  (九)一个因数是两位数的乘法法则

  1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;

  2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;

  3、然后把两次乘得的数加起来。

  (十)除数是两位数的除法法则

  1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,

  2、除到被除数的哪一位就在哪一位上面写商;

  3、每求出一位商,余下的数必须比除数小。

  (十一)万级数的读法法则

  1、先读万级,再读个级;

  2、万级的数要按个级的读法来读,再在后面加上一个“万”字;

  3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。

  (十二)多位数的读法法则

  1、从高位起,一级一级往下读;

  2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;

  3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。

  (十三)小数大小的比较

  比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。

  (十四)小数加减法计算法则

  计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。

  (十五)小数乘法的计算法则

  计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。

  (十六)除数是整数除法的法则

  除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。

  (十七)除数是小数的除法运算法则

  除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。

  (十八)解答应用题步骤

  1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么;

  2、确定每一步该怎样算,列出算式,算出得数;

  3、进行检验,写出答案。

  (十九)列方程解应用题的一般步骤

  1、弄清题意,找出未知数,并用X表示;

  2、找出应用题中数量之间的相等关系,列方程;

  3、解方程;

  4、检验、写出答案。

  (二十)同分母分数加减的法则

  同分母分数相加减,分母不变,只把分子相加减。

  (二十一)同分母带分数加减的法则

  带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。

  (二十二)异分母分数加减的法则

  异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。

  (二十三)分数乘以整数的计算法则

  分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。

  (二十四)分数乘以分数的计算法则

  分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。

  (二十五)一个数除以分数的计算法则

  一个数除以分数,等于这个数乘以除数的倒数。

  (二十六)把小数化成百分数和把百分数化成小数的方法

  把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;

  把百分数化成小数,把百分号去掉,同时小数点向左移动两位。

  (二十七)把分数化成百分数和把百分数化成分数的方法

  把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;

  把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。

  【小学数学口决定义归类】

  1、什么是图形的周长?

  围成一个图形所有边长的总和就是这个图形的周长。

  2、什么是面积?

  物体的表面或围成的平面图形的大小叫做他们的面积。

  3、加法各部分的关系:

  一个加数=和—另一个加数

  4、减法各部分的关系:

  减数=被减数—差被减数=减数+差

  5、乘法各部分之间的关系:

  一个因数=积÷另一个因数

  6、除法各部分之间的关系:

  除数=被除数÷商被除数=商×除数

  7、角

  (1)什么是角?

  从一点引出两条射线所组成的图形叫做角。

  (2)什么是角的顶点?

  围成角的端点叫顶点。

  (3)什么是角的边?

  围成角的射线叫角的边。

  (4)什么是直角?

  度数为90°的角是直角。

  (5)什么是平角?

  角的两条边成一条直线,这样的角叫平角。

  (6)什么是锐角?

  小于90°的角是锐角。

  (7)什么是钝角?

  大于90°而小于180°的角是钝角。

  (8)什么是周角?

  一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360°。

  8、(1)什么是互相垂直?什么是垂线?什么是垂足?

  两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。

  (2)什么是点到直线的距离?

  从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。

  9、三角形

  (1)什么是三角形?

  有三条线段围成的图形叫三角形。

  (2)什么是三角形的边?

  围成三角形的每条线段叫三角形的边。

  (3)什么是三角形的顶点?

  每两条线段的’交点叫三角形的顶点。

  (4)什么是锐角三角形?

  三个角都是锐角的三角形叫锐角三角形。

  (5)什么是直角三角形?

  有一个角是直角的三角形叫直角三角形。

  (6)什么是钝角三角形?

  有一个角是钝角的三角形叫钝角三角形。

  (7)什么是等腰三角形?

  两条边相等的三角形叫等腰三角形。

  (8)什么是等腰三角形的腰?

  有等腰三角形里,相等的两个边叫做等腰三角形的腰。

  (9)什么是等腰三角形的顶点?

  两腰的交点叫做等腰三角形的顶点。

  (10)什么是等腰三角形的底?

  在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。

  (11)什么是等腰三角形的底角?

  底边上两个相等的角叫等腰三角形的底角。

  (12)什么是等边三角形?

  三条边都相等的三角形叫等边三角形,也叫正三角形。

  (13)什么是三角形的高?什么叫三角形的底?

  从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。

  (14)三角形的内角和是多少度?

  三角形内角和是180°。

  10、四边形

  (1)什么是四边形?

  有四条线段围成的图形叫四边形。

  (2)什么是平等四边形?

  两组对边分别平行的四边形叫做平行四边形。

  (3)什么是平行四边形的高?

  从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。

  (4)什么是梯形?

  只有一组对边平行的四边形叫做梯形。

  (5)什么是梯形的底?

  在梯形里互相平等的一组边叫梯形的底(通常较短的底叫上底,较长的底叫下底)。

  (6)什么是梯形的腰?

  在梯形里,不平等的一组对边叫梯形的腰。

  (7)什么是梯形的高?

  从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。

  (8)什么是等腰梯形?

  两腰相等的梯形叫做等腰梯形。

  11、什么是自然数?

  用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……是自然数(自然数都是整数)。

  12、什么是四舍五入法?

  求一个数的近似数时,看被省略的尾数位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。

  13、加法意义和运算定律

  (1)什么是加法?

  把两个数合并成一个数的运算叫加法。

  (2)什么是加数?

  相加的两个数叫加数。

  (3)什么是和?

  加数相加的结果叫和。

  (4)什么是加法交换律?

  两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。

  14、什么是减法?

  已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。

  15、什么是被减数?什么是减数?什么叫差?

  在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。

  16、加法各部分间的关系:

  和=加数+加数加数=和—另一加数

  17、减法各部分间的关系:

  差=被减数—减数减数=被减数—差被减数=减数+差

  18、乘法

  (1)什么是乘法?

  求几个相同加数的和的简便运算叫乘法。

  (2)什么是因数?

  相乘的两个数叫因数。

  (3)什么是积?

  因数相乘所得的数叫积。

  (4)什么是乘法交换律?

  两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。

  (5)什么是乘法结合律?

  三个数相乘,先把前两个数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。

  19、除法

  (1)什么是除法?

  已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。

  (2)什么是被除数?

  在除法中,已知的积叫被除数。

  (3)什么是除数?

  在除法中,已知的一个因数叫除数。

  (4)什么是商?

  在除法中,求出的未知因数叫商。

  20、乘法各部分的关系:

  积=因数×因数一个因数=积÷另一个因数

  21、(1)除法各部分间的关系:

  商=被除数÷除数除数=被除数÷商

  (2)有余数的除法各部分间的关系:

  被除数=商×除数+余数

  22、什么是名数?

  通常量得的数和单位名称合起来的数叫名数。

  23、什么是单名数?

  只带有一个单位名称的数叫单名数。

  24、什么是复名数?

  有两个或两个以上单位名称的数叫复名数。

  25、什么是小数?

  仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数叫小数。

  26、什么是小数的基本性质?

  小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。

  27、什么是有限小数?

  小数部分的位数是有限的小数叫有限小数。

  28、什么是无限小数?

  小数部分的位数是无限的小数叫无限小数。

  29、什么是循环节?

  一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。

  30、什么是纯循环小数?

  循环节从小数第一位开始的叫纯循环小数。

  31、什么是混循环小数?

  循环节不是从小数部分第一位开始的叫做混循环小数。

  32、什么是四则运算?

  我们把学过的加、减、乘、除四种运算统称四则运算。

  33、什么是方程?

  含有未知数的等式叫方程。

  34、什么是解方程?

  求方程解的过程叫解方程。

  35、什么是倍数?什么叫约数?

  如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。

  36、什么样的数能被2整除?

  个位上是0、2、4、6、8的数都能被2整除。

  37、什么是偶数?

  能被2整除的数叫偶数。

  38、什么是奇数?

  不能被2整除的数叫奇数。

  39、什么样的数能被5整除?

  个位上是0或5的数能被5整除。

  40、什么样的数能被3整除?

  一个数的各位上的和能被3整除,这个数就能被3整除。

  41、什么是质数(或素数)?

  一个数如果只有1和它本身两个约数,这样的数叫质数。

  42、什么是合数?

  一个数除了1和它本身还有别的约数,这样的数叫合数。

  43、什么是质因数?

  每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。

  44、什么是分解质因数?

  把一个合数用质因数相乘的形式表示出来叫做分解质因数。

  45、什么是公约数?什么叫公约数?

  几个数公有的约数叫公约数。其中的一个叫公约数。

  46、什么是互质数?

  公约数只有1的两个数叫互质数。

  47、什么是公倍数?什么是最小公倍数?

  几个数公有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。

  48、分数

  (1)什么是分数?

  把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。

  (2)什么是分数线?

  在分数里中间的横线叫分数线。

  (3)什么是分母?

  分数线下面的部分叫分母。

  (4)什么是分子?

  分数线上面的部分叫分子。

  (5)什么是分数单位?

  把单位“1”平均分成若干份,表示其中的一份叫分数单位。

  49、怎么比较分数大小?

  (1)分母相同的两个分数,分子大的分数比较大。

  (2)分子相同的两个分数,分母小的分子比较大。

  (3)什么是真分数?

  分子比分母小的分数叫真分数。

  (4)什么是假分数?

  分子比分母大或者分子和分母相等的分数叫假分数。

  (5)什么是带分数?

  由整分数和真分数合成的数通常叫带分数。

  (6)什么是分数的基本性质?

  分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。

  (7)什么是约分?

  把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。

  (8)什么是最简分数?

  分子、分母是互质数的分数叫最简分数。

  50、比

  (1)什么是比?

  两个数相除又叫两个数的比。

  (2)什么是比的前项?

  比号前面的数叫比的前项。

  (3)什么是比的后项?

  比号后面的数叫比的后项。

  (4)什么是比值?

  比的前项除以后项所得的商叫比值。

  (5)什么是比的基本性质?

  比的前项和后项同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。

  51、长方体和正方体

  (1)什么是棱?

  两个面相交的边叫棱。

  (2)什么是顶点?

  三条棱相交的点叫顶点。

  (3)什么是长方体的长、宽、高?

  相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。

  (4)什么是正方体(立方体)?

  长宽高都相等的长方体叫正方体(或立方体)。

  (5)什么是长方体的表面积?

  长方体_个面的总面积叫长方体的表面积。

  (6)什么是物体体积?

  物体所占空间的大小叫做物体的体积。

  52、圆

  (1)什么是圆心?

  圆中心的点叫圆心。

  (2)什么是半径?

  连接圆心和圆上任意一点的线段叫半径。

  (3)什么是直径?

  通过圆心、并且两端都在圆上的线段叫直径。

  (4)什么是圆的周长?

  围成圆的曲线叫圆的周长。

  (5)什么是圆周率?

  我们把圆的周长和直径的比值叫圆周率。

  (6)什么是圆的面积?

  圆所围平面的大小叫圆的面积。

  (7)什么是扇形?

  一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。

  (8)什么是弧?

  在圆上两点之间的部分叫弧。

  (9)什么是圆心角?

  顶点在圆心上的角叫圆心角。

  (10)什么是对称图形?

  如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。

数学小学知识点总结9

  1、已经学过的面积单位有平方厘米(cm2)、平方分米(dm2)、平方米(m2)、公顷、平方千米(km2)。

  2、(1)边长是1厘米的正方形,面积是1平方厘米。

  (2)边长是1分米的正方形,面积是1平方分米。

  (3)边长是1米的正方形,面积是1平方米。

  (4)边长是100米的正方形,面积是1公顷。1公顷=10000平方米

  测量土地的面积,可以用公顷作单位。

  例如:鸟巢的占地面积约1公顷。400跑道围起来的部分的面积大约是1公顷。

  (5)边长是1000米的正方形,面积是1平方千米。

  1平方千米=100公顷=1000000平方米

  我国陆地领土面积约为960万平方千米。

  3、面积单位之间的换算:

  (1)首先要记住它们之间的进率:

  1平方千米=100公顷=1000000平方米

  1公顷=10000平方米

  1平方米=100平方分米

  1平方分米=100平方厘米

  1平方米=10000平方厘米

  (2)换算方法:

  ○1把高级单位化为低级单位,要用乘法计算,只要用高级单位前面的数去乘这两个单位之间的进率。(即高化低,乘进率,小数点向右移,移几位,看进率。)

  ○2把低级单位聚成高低级单位,要用除法计算,只要用低级单位前面的数去除以这两个单位之间的进率。(即低化高,除以进率,小数点向左移,移几位,看进率。)

  a、把公顷转化为平方米,只要在公顷前面的数据后面直接添写4个0。

  b、把平方米转化为公顷,只要在平方米前面的数据后面直接去掉4个0。

  c、把平方千米转化为公顷,只要在平方千米前面的数据后面直接添写2个0。

  d、把平方千米转化为平方米,只要在平方千米前面的数据后面直接添写6个0。

  e、把平方米转化为平方千米,只要在平方米前面的数据后面直接去掉6个0。

  4、填写面积单位的规律:

  (1)国土面积、省份(含直辖市)面积、省会城市面积、州(市)面积、县、乡镇面积、村委会、村庄面积、一般要用“平方千米”作单位。

  (2)公园、院(校)园、体育场(馆)等,一般要用“公顷”作单位。

  (3)房屋(建筑)面积、教室面积、校园绿化面积等,一般要用“平方米”作单位。

数学小学知识点总结10

  角:

  (1)角的静态定义:具有公共端点的两条不重合的射线组成的图形叫做角。

  这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  (2)角的动态定义:一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。

  所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边

  角的符号:∠

  角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。

  在动态定义中,取决于旋转的方向与角度。

  角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。

  以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  (1)锐角:大于0°,小于90°的角叫做锐角。

  (2)直角:等于90°的角叫做直角。

  (3)钝角:大于90°而小于180°的角叫做钝角。

  乘法:

  乘法是指一个数或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以说成5个4连加。

  乘法算式中各数的名称:

  “×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。

  例:10(因数)×(乘号)200(因数)=(等于号)2000(积)

  平行:

  在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。如图直线AB平行于直线CD,记作AB∥CD。平行线永不相交。

  垂直:

  两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。

  平行四边形:

  在同一平面内有两组对边分别平行的四边形叫做平行四边形。

  梯形:

  梯形是指一组对边平行而另一组对边不平行的四边形。

  平行的两边叫做梯形的底边,其中长边叫下底,短边叫上底;也可以单纯的认为上面的一条叫上底,下面一条叫下底。不平行的两边叫腰;夹在两底之间的垂线段叫梯形的高。

  除法:

  除法法则:除数是几位,先看被除数的前几位,前几位不够除,多看一位,除到哪位,商就写在哪位上面,不够商一,0占位。余数要比除数小,如果商是小数,商的小数点要和被除数的小数点对齐;如果除数是小数,要化成除数是整数的除法再计算。

数学小学知识点总结11

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。(2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

数学小学知识点总结12

  【时分秒】

  1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长。

  2、钟面上有12个数字,12个大格,60个小格;每两个数之间是1个大格,也就是5个小格。

  3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

  4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

  5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

  6、公式(每两个相邻的时间单位之间的进率是60):

  1时=60分

  1分=60秒

  7、常用的时间单位:时、分、秒、年、月、日、世纪等。

  1世纪=100年

  1年=12个月

  【分数的初步认识】

  1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。

  几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。

  ②分母相同,分子大的分数就大,分子小的分数就小。

  4、分数加减法:

  ①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,分子相加、减。

  ②计算1减几分之几时,先把1写成与减数分母相同的分数,再计算。

  5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)。

  【测量】

  1、在生活中,量比较短的物品,可以用毫米、厘米、分米做单位;量比较长的物体,常用米做单位;测量比较长的路程一般用千米做单位,千米也叫公里。

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:

  ①进率是10:

  1米=10分米

  1分米=10厘米

  1厘米=10毫米

  ②进率是100:

  1米=100厘米

  1分米=100毫米

  ③进率是1000:

  1千米=1000米

  1公里==1000米

  5、当我们表示物体有多重时,通常要用到质量单位。在生活中,称比较轻的物品质量,可以用克做单位;称一般物品的质量,常用千克做单位;计量较重或大物品的质量,通常用吨做单位。

  6、相邻两个质量单位的进率是1000。

  1吨=1000千克

  1千克=1000克

  【万以内的加法和减法】

  1、读数和写数:

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续两个0,都只读一个0。

  2、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数位上的数,如果位上的数相同,就比较下一位,以此类推。

  3、求一个数的近似数:看数的后面一位,如果是0~4就用四舍法,如果是5~9就用五入法。

  4、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1,在本位上加上10再减;如果前一位是0,则再从前一位退1。

  【倍的认识】

  1、倍的意义:要知道两个数的关系,先确定谁是1倍数,然后把另一个数和它作比较,另一个数里有几个1倍数就是它的几倍。

  2、求一个数是另一个数的几倍的计算方法:一个数÷另一个数=倍数。

  3、求一个数的几倍是多少的计算方法:这个数×倍数=这个数的几倍。

  【长方形和正方形】

  1、有4条直的边和4个角封闭的图形叫做四边形。

  2、四边形的特点:有四条直的边,有四个角。

  3、长方形的特点:长方形有两条长,两条宽,四个角都是直角,对边相等。

  4、正方形的特点:有4个直角,4条边相等。

  5、长方形和正方形是特殊的平行四边形。

  6、平行四边形的特点:

  ①对边相等、对角相等;

  ②平行四边形容易变形。(三角形不容易变形)

  7、封闭图形一周的长度,就是它的周长。

  8、公式:

  长方形的周长=(长+宽)×2=长×2+宽×2

  长方形的长=周长÷2—宽

  长方形的宽=周长÷2—长

  正方形的周长=边长×4

  正方形的边长=周长÷4

  【多位数乘一位数】

  1、估算:先求出多位数的近似数,再进行计算,如497×7≈3500。

  2、

  ①0和任何数相乘都得0;

  ②1和任何不是0的数相乘还得原来的数。

  3、三位数乘一位数,积有可能是三位数,也有可能是四位数。

  4、多位数乘一位数(进位)的笔算方法:

  相同数位对齐,从个位乘起,用一位数分别去乘多位数每一位上的数,哪一位上乘得的数积满几十,就向前一位进几,与哪一位相乘,积就写在哪一位下面。

  5、一个因数中间有0的乘法:

  ①0和任何数相乘都得0;

  ②因数中间有0,用一位数去乘多位数每一位数上的数,与中间的0相乘时,如果后面没有进上来的数,这一位上要用0来占位,如果有进上来的数必须加上。

  6、一个因数末尾有0的乘法的简便计算:笔算时,可以把一位数与多位数0前面的那个数字对齐,再看多位数的末尾有几个0,就在积的末尾添上几个0。

  7、关于“大约”的应用题:问题中出现“大约”“约”“估一估”“估算”“估计一下”,条件中无论有没有大约都是求近似数,用估算。

  8、减法的验算方法:

  ①用被减数减去差,看结果是不是等于减数;

  ②用差加减数,看结果是不是等于被减数。

  9、加法的验算方法:

  ①交换两个加数的位置再算一遍;

  ②用和减一个加数,看结果是不是等于另一个加数。

  学习困难的原因

  1、学习自觉性较差

  初中生学习自觉性较差,缺少解题的积极性,解题时不注重步骤、过程。

  2、学习意志薄弱

  数学的逻辑性和抽象性很强,知识间联系紧密,对学生的灵活应用能力,分析能力要求很强。如果学生对前面所学的知识掌握不好或未理解的话,就会直接影响深一层次内容的学习,造成知识脱节,跟不上集体学习的进程,在加在自身的毅力薄弱。其结果往往就会产生厌学情绪,放弃数学的学习。

  3、无兴趣学习或兴趣低

  一部分学生一开始就没有学好数学,导致基础不好,久而久之导致恶性循环;还有些学生认为学数学没用,选择放弃选读,因此成绩变得连“过得去”也难以维持。

  4、没有养成良好的数学学习习惯

  有些学生边学边玩,注意力不集中,或是思维单一,不能横向思考或纵深思考;又或者不听不记,思维懒惰,粗心大意、马虎等等都是造成错误率高的重要原因。

  所以同学们要注意自己是否存在以上问题,要想办法及时解决。

  数学的概念

  数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。

数学小学知识点总结13

  1.根据方向和距离可以确定物体在平面图上的位置。

  2.在平面图上标出物体位置的方法:

  先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

  3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

  4.绘制路线图的方法:

  (1)确定方向标和单位长度。

  (2)确定起点的位置。

  (3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

  (4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

数学小学知识点总结14

  (一)乘除四则运算

  1.乘法和除法互为逆运算。

  2.在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。

  3.被除数÷除数=商 除数=被除数÷商 被除数=商×除数

  (二)小数四则运算

  1. 小数加法:

  小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。

  2. 小数减法:

  小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.

  3. 小数乘法:

  小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

  4. 小数除法:

  小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

  5. 乘方:

  求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32

  (三)分数四则运算

  1. 分数加法:

  分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。

  2. 分数减法:

  分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。

  3. 分数乘法:

  分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  4. 乘积是1的两个数叫做互为倒数。

  5. 分数除法:

  分数除法的意义与整数除法的意义相同。就是已知两个因数的积 与其中一个因数,求另一个因数的运算。

  (四)运算定律

  1. 加法交换律:

  两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。

  2. 加法结合律:

  三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。

  3. 乘法交换律:

  两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。

  4. 乘法结合律:

  三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。

数学小学知识点总结15

  1、上、下

  (1)在具体场景中理解上、下的含义及其相对性。

  (2)能比较准确地确定物体上下的方位,会用上、下描述物体的相对位置。

  (3)培养学生初步的空间观念。

  2、前、后

  (1)在具体场景中理解前、后、最×的含义,以及前后的相对性。

  (2)能比较准确地确定物体前后的方位,会用前、后、最前、最后描述物体的相对位置。

  (3)培养学生初步的空间观念。

  加减法

  (一)本单元知识网络:

  (二)各课知识点:

  有几枝铅笔(加法的认识)

  知识点:

  1、初步了解加法的含义,会读、写加法算式,感悟把两个数合并在一起求一共是多少,用加法计算;

  2、初步尝试选择恰当的方法进行5以内的加法口算。

  3、第一次出现了图形应用题,要让学生学会看图形应用型题目,理解题目的意思。

  有几辆车(初步认识加法的交换律)

  3、左、右(1)在具体场景中理解左、右的含义及其相对性。

  (2)能比较准确地确定物体左右的方位,会用左、右描述物体的位置。

  (3)培养学生初步的空间观念。

  4、位置

  (1)明确“横为行、竖为列”,并知道“第几行第几个”、“第几组第几个”的含义。

  (2)在具体情境中,会用2个数据(2个维度)描述人或物体的具体位置。

  (3)在具体情境中,能依据2个维度的数据找到人或物体的具体位置。

数学小学知识点总结16

  1、角的初步认识

  (1)角是由一个顶点和两条边组成的;

  (2)画角的方法:从一个点起,用尺子向不同的方向画两条直线。

  (3)角的大小与边的长短没有关系,与角的两条边张开的大小有关,角的两条边张开得越大,角就越大,角的两条边张开得越小,角就越小。

  2、直角的初步认识

  (1)直角的判断方法:用三角尺上的直角比一比(顶点对顶点,一边对一边,再看另一条边是否重合)。

  (2)画直角的方法:

  ①先画一个顶点,再从这个点出发画一条直线

  ②用三角尺上的直角顶点对齐这个点,一条直角边对齐这条线

  ③再从这点出发沿着三角尺上的另一条直角边画一条线

  ④最后标出直角标志。

  (3)比直角小的是锐角,比直角大的是钝角:锐角<直角<钝角。

  (4)所有的直角都一样大

  (5)每个三角尺上都有1个直角,两个锐角。红领巾上有3个角,其中一个是钝角,两个是锐角。一个长方形中和正方形中都是有4个直角。

数学小学知识点总结17

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的计算方法:用分子乘整数的积作分子,分母不变。能约分的可以先约分,再计算。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)

  (2)约分是用整数和下面的分母约掉公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的计算方法是:用分子相乘的积做分子,用分母相乘的积作分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b>1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b=1时,c=a。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数混合运算

  1、分数混合运算的运算顺序与整数混合运算的运算顺序相同,先算乘法,后算加减法,有括号的先算括号里面的,再算括号外面的。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、求比一个数多(或少)几分之几的数是多少的解题方法

  (1)单位“1”的量+(-)单位“1”的量×这个数量比单位“1”的量多(或少)的几分之几=这个数量;

  (2)单位“1”的量×[1+这个数量比单位“1”的量多(或少)的几分之几]=这个数量。

数学小学知识点总结18

  一、圆的特征

  1、圆是平面内封闭曲线围成的平面图形。

  2、圆的特征:外形美观,易滚动。

  3、圆心O:圆中心的`点叫做圆心.圆心一般用字母O表示。

  圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。

  半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。

  直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。

  同圆或等圆内直径是半径的2倍:d=2r或r=d÷2

  4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。

  5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。

  有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。

  有二条对称轴的图形:长方形

  有三条对称轴的图形:等边三角形

  有四条对称轴的图形:正方形

  有无条对称轴的图形:圆,圆环

  6、画圆

  (1)圆规两脚间的距离是圆的半径。

  (2)画圆步骤:定半径、定圆心、旋转一周。

  二、圆的周长:

  围成圆的曲线的长度叫做圆的周长,周长用字母C表示。

  1、圆的周长总是直径的三倍多一些。

  2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。

  即:圆周率π=周长÷直径≈3.14

  所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd,c=2πr

  圆周率π是一个无限不循环小数,3.14是近似值。

  3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。

  4、半圆周长=圆周长一半+直径=πr+d

  三、圆的面积s

  1、圆面积公式的推导

  如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。

  圆的半径=长方形的宽

  圆的周长的一半=长方形的长

  长方形面积=长×宽

  所以:圆的面积=圆的周长的一半(πr)×圆的半径(r)

  S圆=πr×r=πr2

  2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则,而长方形的面积则最小。

  周长相同时,圆面积,利用这一特点,篮子、盘子做成圆形。

  3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。

  4、环形面积=大圆–小圆=πR2-πr2

  扇形面积=πr2×n÷360(n表示扇形圆心角的度数)

  5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。

  一个圆的半径增加a厘米,周长就增加2πa厘米。

  一个圆的直径增加b厘米,周长就增加πb厘米。

  6、任意一个正方形的内切圆即圆的直径是正方形的边长,它们的面积比是4∶π。

  7、常用数据

  π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

感谢您花时间阅读本文。如果您觉得数学小学知识点总结这篇文章对您有所帮助,我们非常希望您能够将其分享给更多的人。最后我们将继续努力,为您提供更多有价值的内容。祝您生活愉快!

本文由用户liao分享,如有侵权请联系。如若转载,请注明出处:http://www.yunpanclub.com/62224.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注