高一某些数列前n项和公式

高一某些数列前n项和公式

高一某些数列前n项和公式 篇一

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

高一数学公式总结 篇二

基本三角函数

2ⅠⅡⅢⅣⅡ终边落在x轴上的角的集合:

2Ⅰ、Ⅲ2Ⅰ、Ⅲ2Ⅱ、ⅣⅡ、Ⅳy轴上的角的集合:

2,z终边落在

,z终边落在坐标轴上的角的集合:,z

22基本三角函数符号记“一全,二正弦,三切,四1180弧度忆:112Slrr余弦”221801弧度度180弧度lr360度2弧度。tancot1倒数关系:SinCsc1正六边形对角线上对应的三角函数之积为1

CosSec1

tan21Sec2平方关系:Sin2Cos2三个倒立三角形上底边对应三角函数的平方何等与对1边对应的三角函数的平方1Cot2Csc2乘积关系:SintanCos,顶点的三角函数等于相邻的点对应的函数乘积

Ⅲ诱导公式终边相同的角的三角函数值相等

Sin2kSin,kz

Cos2kCos,kztan2ktan,kz角与角关于x轴对称

SinSinCosCostantan

用心爱心专心115号编辑

角与角关于y轴对称

SinSinCosCostantan

角与角关于原点对称SinSintantanCosCos

角与角关于yx对称SinCosSinCos222Cos2SinCos2Sintan2cottan2cot上述的’诱导公式记忆口诀:“奇变偶不变,符号看象限”

Ⅳ周期问题

yASinx,A0,0,T2

yACosx,A0,0,T2

yASinx,A0,0,TyACosx,A0,0,TyASinxb,A0,0,b0,T2yACosxb,A0,0,b0,T2yAtanx,A0,0,TyAcotx,A0,0,T

yAtanx,A0,0,TyAcotx,A0,0,TⅤ三角函数的性质性质ySinxyCosx定义域RR值域1,11,1周期性22奇偶性奇函数偶函数单调性2k,2k2k2,2k2,kz,增函数,kz,增函数2k,2k,kz,减函数2k32,2k2,kz,减函数

2

对称中心k,0,kzk2,0,kz对称轴xk2,kzxk,kz5图4534y23y12像x1-8-2π-6-3π/2-4-π-2-π/2Oπ/22π43π/262π8-π/23π/2x-1-8-2π-6-3π/2-4-π-2Oπ/22π462π8-1-2-2-3-3-4-4-5-5-6性质ytanxycotx定义域xx,zxx,z2值域RR周期性奇偶性奇函数奇函数单调性k,k,kz,增函数22k,k,kz,增函数对称中心k,0,kzk2,0,kz对称轴无无10y86图y42x像-15-10-5-3π/2-π-π/2Oπ/2π3π/251015-20x-4-6-8-10怎样由ySinx变化为yASinxk?

振幅变化:ySinxyASinx左右伸缩变化:

yASinx左右平移变化yASin(x)上下平移变化yASin(x)k

3

Ⅵ平面向量共线定理:一般地,对于两个向量a,a0,b,如果有

一个实数,使得ba,a0,则b与a是共线向量;反之如果b与a是共线向量那么又且只有一个实数,使得ba.

Ⅶ线段的定比分点

点P分有向线段P1P2所成的比的定义式P1PPP2.线段定比分点坐标公式线段定比分点向量公式x1x2x1OP1OP2.OPy1y2y11当1时当1时

线段中点坐标公式线段中点向量公式x1x2x2.OPOP1OP2yy2y122

Ⅷ向量的一个定理的类似推广

向量共线定理

其中e1,e2为该平面内的两个平面向量基本定理:aee,1122不共线的向量推广

a1e12e23e3,空间向量基本定理:其中e,e,e为该空间内的三个123不共面的向量

Ⅸ一般地,设向量ax1,y1,bx2,y2且a0,如果a∥b那么x1y2x2y10反过来,如果x1y2x2y10,则a∥b.

Ⅹ一般地,对于两个非零向量a,b有ababCos,其中θ为两向量的夹角。

Cosababx1x2y1y2x12y12x22y22

特别的,aaaa或者aⅪ

22aa

如果ax1,y1,bx2,y2且a0,则abx1x2y1y2特别的,abx1x2y1y20Ⅻ若正n边形A1A2An的中心为O,则OA1OA2OAn0

三角形中的三角问题

ABCABC,ABC,-22222ABCSinABSinCCosABCosCSinCos22

ABCCosSin22正弦定理:

abcabc2RSinASinBSinCSinASinBSinC余弦定理:

a2b2c22bcCosA,b2a2c22acCosBcab2abCosC222

b2c2a2a2c2b2CosA,CosB2bc2ac变形:222abcCosC2abtanAtanBtanCtanAtanBtanC

三角公式以及恒等变换

两角的和与差公式:SinSinCosCosSin,S()

SinSinCosCosSin,S()CosCosCosSinSin,C()CosCosCosSinSin,C()

tantan,T()1tantantantantan,T()1tantantan二倍角公式:

Sin22SinCostantantan1tantan变形:tantantan1tantan

tantantantantantan其中,,为三角形的三个内角Cos22Cos2112Sin2Cos2Sin22tantan21tan2

半角公式:

Sin21Cos2tan21CosCos22

1CosSin1Cos

1Cos1CosSin用心爱心专心115号编辑

降幂扩角公式:Cos21Cos2,Sin21Cos2

221SinSin21积化和差公式:CosSinSinSin

21CosCosCosCos21SinSinCosCos2SinCosSinSin2SinCos22SinSin2CosSin和差化积公式:22CosCos2CosCos22CosCos2SinSin222tanSinSS2SC(SS2CS)

CC2CCCC2SS21tan22万能公式:

1tan2Cos1tan222(STC)

tan2tan2

1tan2233三倍角公式:Sin33Sin4Sintan33tantan213tanCos34Cos33Cos“三四立,四立三,中间横个小扁担”

用心爱心专心115号编辑6

1.yaSinbCosa2b2Sin其中,tanba2.yaCosbSina2b2Sin其中,tanaba2b2Cos其中,tanba3.yaSinbCosa2b2Sin其中,tanbaa2b2Cos其中,tanab4.yaCosbSina2b2Sina2b2Sin其中,tanaba2b2Cos其中,tanba注:不同的形式有不同的化归,相同的形式也有不同的化归,进而可以求解最值问题。不需要死记公式,只要记忆1.的推导即表达技巧,其它的就可以直接写出。一般是表达式第一项是正弦的就用两角和与差的正弦来靠,第一项是余弦的就用两角和与差的与弦来靠。比较容易理解和掌握。

tantantan补充:1.由公式1tantan,T()tantantan1tantan,T()可以推导:当4时,z,1tan1tan2

在有些题目中应用广泛。

2.tantantantantantan3.柯西不等式(a2b2)(c2d2)(acbd)2,a,b,c,dR.

补充

1.常见三角不等式:(1)若x(0,2),则sinxxtanx.

(2)若x(0,2),则1sinxcosx2.(3)|sinx||cosx|1.

2.sin()sin()sin2sin2(平方正弦公式);

cos()cos()cos2sin2.

asinbcos=a2b2sin()(辅助角所在象限由点(a,b)的象限决

定,tanba)。

3、三倍角公式:sin33sin4sin34sinsin(3)sin(3)。cos34cos33cos4coscos()cos(33)。用心爱心专心115号编辑

7

3tantan3tan3tantan()tan()。

13tan2334.三角形面积定理:

(1)S111ahabhbchc(ha、hb、hc分别表示a、b、c边上的222高)。

(2)S111absinCbcsinAcasinB.222221(|OA||OB|)(OAOB)。

(3)SOAB2CAB2C22(AB)。222k5.三角形内角和定理在△ABC中,有ABCC(AB)

26、正弦型函数yAsin(x)的对称轴为x(kZ);

对称中心为(k,0)(kZ);

类似可得余弦函数型的对称轴和对称中心;

〈三〉易错点提示:

1、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、

余弦函数的有界性了吗?

2、在三角中,你知道1等于什么吗?

这些统称为1的代换)常数“1”的种

种代换有着广泛的应用.

3、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角。异角化同角,异名化同名,高次化低次)

4、你还记得在弧度制下弧长公式和扇形面积公式吗?

高一数学公式 篇三

正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径

余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角

圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标

圆的一般方程x2+y2+dx+ey+f=0注:d2+e2-4f0

抛物线标准方程y2=2pxy2=-2p_2=2pyx2=-2py

直棱柱侧面积s=c_h斜棱柱侧面积s=c_h

正棱锥侧面积s=1/2c_h正棱台侧面积s=1/2(c+c)h

圆台侧面积s=1/2(c+c)l=pi(r+r)l球的表面积s=4pi_r2

圆柱侧面积s=c_h=2pi_h圆锥侧面积s=1/2_c_l=pi_r_l

弧长公式l=a_ra是圆心角的弧度数r0扇形面积公式s=1/2_l_r

锥体体积公式v=1/3_s_h圆锥体体积公式v=1/3_pi_r2h

斜棱柱体积v=sl注:其中,s是直截面面积,l是侧棱长

柱体体积公式v=s_h圆柱体v=pi_r2h

高一数学公式总结 篇四

导数公式

y=f(x)=c (c为常数)则f'(x)=0

f(x)=x^n (n不等于0) f'(x)=nx^(n-1)(x^n表示x的`n次方)

f(x)=sinx f'(x)=cosx

f(x)=cosx f'(x)=-sinx

f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

f(x)=e^x f'(x)=e^x

f(x)=logaX f'(x)=1/xlna(a>0且a不等于1,x>0)

f(x)=lnx f'(x)=1/x(x>0)

f(x)=tanx f'(x)=1/cos^2x

f(x)=cotx f'(x)=-1/sin^2x

导数运算法则

加法法则:(f(x)-g(x))’=f'(x)-g'(x)

减法法则:(f(x)+g(x))’=f'(x)+g'(x)

乘法法则:(f(x)g(x))’=f'(x)g(x)+f(x)g'(x)

除法法则:(g(x)/f(x))’=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

高一数学公式总结 篇五

一、三角公式以及恒等变换

两角的和与差公式:SinSinCosCosSin,S()

SinSinCosCosSin,S()

CosCosCosSinSin,C()

CosCosCosSinSin,C()

tantan,T()

1tantantantantan,T()

1tantantan

二倍角公式:

Sin22SinCos2tantantan1tantan

变形:tantantan1tantan

tantantantantantan

其中,为三角形的三个内角Cos22Cos112SinCosSin2tantan21tan2222

半角公式:

Sin21Cos21CosCos222tan21CosSin1Cos

1Cos1CosSin

降幂扩角公式:

Cos21Cos2,

Sin21Cos2

21SinSin21

积化和差公式:

CosSinSinSin21CosCosCosCos21SinSinCosCos2SinCosSinSin2SinCos22SS2SCSinSin2CosSin

和差化积公式:

22(SS2CS)CC2CCCosCos2CosCosCC2SS22CosCos2SinSin222tanSin21tan22

万能公式:

1tan2Cos1tan222(STC)

tan2tan2

1tan2233三倍角公式:Sin33Sin4Sintan33tantan13tan2Cos34Cos33Cos

二、基本三角函数

2ⅠⅡⅢ2Ⅰ、Ⅲ2Ⅰ、ⅢⅡ、ⅣⅡ、Ⅳ2Ⅳ

三、终边落在x轴上的角的集合:

2,z,z2终边落在y轴上的角的集合:终边落在坐标轴上的角的集合:,z2基本三角函数符号记1弧度“一全,二正弦,三切,四忆:112180Slrr余弦”221801弧度度180弧度lr360度2弧度。tancot1倒数关系:SinCsc1正六边形对角线上对应的`三角函数之积为1

CosSec1

tan21Sec2平方关系:Sin2Cos2三个倒立三角形上底边对应三角函数的平方何等与对1边对应的三角函数的平方1Cot2Csc2乘积关系:SintanCos,顶点的三角函数等于相邻的点对应的函数乘积

四、诱导公式终边相同的角的三角函数值相等

Sin2kSin,kz

Cos2kCos,kztan2ktan,kz角与角关于x轴对称

SinSin

CosCostantan2

角与角关于y轴对称

SinSinCosCostantan

角与角关于原点对称SinSinCosCostantan

角2与角关于yx对称SinCosSinCos22CosSinCosSin22tancottancot22上述的诱导公式记忆口诀:“奇变偶不变,符号看象限”

五、周期问题

2yACosx,A0,0,T

yASinx,A0,0,TyACosx,A0,0,TyASinxb,A0,0,b0,T2yASinx,A0,0,T2

2yACosxb,A0,0,b0,TTyAcotx,A0,0,yAtanx,A0,0,T

yAcotx,A0,0,TyAtanx,A0,0,T

六、三角函数的性质定义域值域周期性奇偶性单调性

ySinxRyCosxR1,12奇函数

2k2,2k2,kz,增函数32k,2k,kz,减函数221,12偶函数

2k,2k,kz,增函数2k,2k,kz,减函数

对称中心k,0,kzxkk,0,kz2xk,kz54对称轴图像

2,kz3542y31y2x-8-2π-6-3π/2-4π-2π/2Oπ/22π43π/262π81-1π/2-83π/2O-1×6-2π-6-3π/2-4π-2π/22π42π8-2-2-3-3-4-4-5-5-6性质定义域

ytanxycotxxx,z2R奇函数xx,zR奇函数值域周期性

奇偶性单调性k,k,kz,增函数22k,k,kz,增函数k,0,kz2

对称中心对称轴图像k,0,kz无108无y64y2x-15-10-5-3π/2ππ/2Oπ/2π3π/2510150x-2-4-6-8-10

怎样由ySinx变化为yASinxk?

振幅变化:ySinxyASinx左右伸缩变化:

yASinx左右平移变化yASin(x)上下平移变化yASin(x)k

七、三角形中的三角问题

ABCABC,ABC,-22222ABCSinABSinCCosABCosCSinCos22

ABCCosSin22正弦定理:

abcabc2RSinASinBSinCSinASinBSinC余弦定理:

a2b2c22bcCosA,b2a2c22acCosBcab2abCosC222

b2c2a2a2c2b2CosA,CosB2bc2ac变形:222abcCosC2abtanAtanBtanCtanAtanBtanC

本文由用户liao分享,如有侵权请联系。如若转载,请注明出处:http://www.yunpanclub.com/60239.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注