高一数学教案全套 高一数学教案【精选5篇】

高一数学教案【精选5篇】

这是一份精选的高一数学教案集合,主要包括高一数学教案全套、高一数学教案详案范文、高一数学优秀教案等多个类别。这些教案涵盖了高一数学教学设计、教案模板等方面的内容,供教师们参考使用。通过这些教案,教师们可以更好地指导学生的学习,提高他们的数学能力。无论是在课堂上还是课后辅导中,这些教案都将是一份宝贵的参考资料。

高一数学的教案 篇一

教学目标:

使学生理解函数的概念,明确决定函数的三个要素,学会求某些函数的定义域,掌握判定两个函数是否相同的方法;使学生理解静与动的辩证关系。

教学重点:

函数的概念,函数定义域的求法。

教学难点:

函数概念的理解。

教学过程:

Ⅰ。课题导入

[师]在初中,我们已经学习了函数的概念,请同学们回忆一下,它是怎样表述的?

(几位学生试着表述,之后,教师将学生的回答梳理,再表述或者启示学生将表述补充完整再条理表述)。

设在一个变化的过程中有两个变量x和y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说y是x的函数,x叫做自变量。

[师]我们学习了函数的概念,并且具体研究了正比例函数,反比例函数,一次函数,二次函数,请同学们思考下面两个问题:

问题一:y=1(xR)是函数吗?

问题二:y=x与y=x2x 是同一个函数吗?

(学生思考,很难回答)

[师]显然,仅用上述函数概念很难回答这些问题,因此,需要从新的高度来认识函数概念(板书课题)。

Ⅱ。讲授新课

[师]下面我们先看两个非空集合A、B的元素之间的一些对应关系的例子。

在(1)中,对应关系是乘2,即对于集合A中的每一个数n,集合B中都有一个数2n和它对应。

在(2)中,对应关系是求平方,即对于集合A中的每一个数m,集合B中都有一个平方数m2和它对应。

在(3)中,对应关系是求倒数,即对于集合A中的每一个数x,集合B中都有一个数 1x 和它对应。

请同学们观察3个对应,它们分别是怎样形式的对应呢?

[生]一对一、二对一、一对一。

[师]这3个对应的共同特点是什么呢?

[生甲]对于集合A中的任意一个数,按照某种对应关系,集合B中都有惟一的数和它对应。

[师]生甲回答的很好,不但找到了3个对应的共同特点,还特别强调了对应关系,事实上,一个集合中的数与另一集合中的数的对应是按照一定的关系对应的,这是不能忽略的。 实际上,函数就是从自变量x的集合到函数值y的集合的一种对应关系。

现在我们把函数的概念进一步叙述如下:(板书)

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f︰AB为从集合A到集合B的一个函数。

记作:y=f(x),xA

其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{y|y=f(x),xA}叫函数的值域。

一次函数f(x)=ax+b(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)=ax+b(a0)和它对应。

反比例函数f(x)=kx (k0)的定义域是A={x|x0},值域是B={f(x)|f(x)0},对于A中的任意一个实数x,在B中都有一个实数f(x)= kx (k0)和它对应。

二次函数f(x)=ax2+bx+c(a0)的定义域是R,值域是当a0时B={f(x)|f(x)4ac-b24a };当a0时,B={f(x)|f(x)4ac-b24a },它使得R中的任意一个数x与B中的数f(x)=ax2+bx+c(a0)对应。

函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题。

y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系函数值是1,在R中y都有惟一确定的值1与它对应,所以说y是x的函数。

Y=x与y=x2x 不是同一个函数,因为尽管它们的对应关系一样,但y=x的定义域是R,而y=x2x 的定义域是{x|x0}。 所以y=x与y=x2x 不是同一个函数。

[师]理解函数的定义,我们应该注意些什么呢?

(教师提出问题,启发、引导学生思考、讨论,并和学生一起归纳、总结)

注意:①函数是非空数集到非空数集上的一种对应。

②符号f:AB表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可。

③集合A中数的任意性,集合B中数的惟一性。

④f表示对应关系,在不同的函数中,f的具体含义不一样。

⑤f(x)是一个符号,绝对不能理解为f与x的乘积。

[师]在研究函数时,除用符号f(x)表示函数外,还常用g(x) 、F(x)、G(x)等符号来表示

Ⅲ。例题分析

[例1]求下列函数的定义域。

(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x

分析:函数的定义域通常由问题的实际背景确定。如果只给出解析式y=f(x),而没有指明它的定义域。那么函数的定义域就是指能使这个式子有意义的实数x的集合。

解:(1)x-20,即x2时,1x-2 有意义

这个函数的定义域是{x|x2}

(2)3x+20,即x-23 时3x+2 有意义

函数y=3x+2 的定义域是[-23 ,+)

(3) x+10 x2

这个函数的定义域是{x|x{x|x2}=[-1,2)(2,+)。

注意:函数的定义域可用三种方法表示:不等式、集合、区间。

从上例可以看出,当确定用解析式y=f(x)表示的函数的定义域时,常有以下几种情况:

(1)如果f(x)是整式,那么函数的定义域是实数集R;

(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;

(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;

(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);

(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合。

例如:一矩形的宽为x m,长是宽的2倍,其面积为y=2×2,此函数定义域为x0而不是全体实数。

由以上分析可知:函数的定义域由数学式子本身的意义和问题的实际意义决定。

[师]自变量x在定义域中任取一个确定的值a时,对应的函数值用符号f(a)来表示。例如,函数f(x)=x2+3x+1,当x=2时的函数值是f(2)=22+32+1=11

注意:f(a)是常量,f(x)是变量 ,f(a)是函数f(x)中当自变量x=a时的函数值。

下面我们来看求函数式的值应该怎样进行呢?

[生甲]求函数式的值,严格地说是求函数式中自变量x为某一确定的值时函数式的值,因此,求函数式的值,只要把函数式中的x换为相应确定的数(或字母,或式子)进行计算即可。

[师]回答正确,不过要准确地求出函数式的值,计算时万万不可粗心大意噢!

[生乙]判定两个函数是否相同,就看其定义域或对应关系是否完全一致,完全一致时,这两个函数就相同;不完全一致时,这两个函数就不同。

[师]生乙的回答完整吗?

[生]完整!(课本上就是如生乙所述那样写的)。

[师]大家说,判定两个函数是否相同的依据是什么?

[生]函数的定义。

[师]函数的定义有三个要素:定义域、值域、对应关系,我们判定两个函数是否相同为什么只看两个要素:定义域和对应关系,而不看值域呢?

(学生窃窃私语:是啊,函数的三个要素不是缺一不可吗?怎不看值域呢?)

(无人回答)

[师]同学们预习时还是欠仔细,欠思考!我们做事情,看问题都要多问几个为什么!函数的值域是由什么决定的,不就是由函数的定义域与对应关系决定的吗!关注了函数的定义域与对应关系,三者就全看了!

(生恍然大悟,我们怎么就没想到呢?)

[例2]求下列函数的值域

(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}

(3)y=x2+4x+3 (-31)

分析:求函数的值域应确定相应的定义域后再根据函数的具体形式及运算确定其值域。

对于(1)(2)可用直接法根据它们的定义域及对应法则得到(1)(2)的值域。

对于(3)可借助数形结合思想利用它们的图象得到值域,即图象法。

解:(1)yR

(2)y{1,0,-1}

(3)画出y=x2+4x+3(-31)的图象,如图所示,

当x[-3,1]时,得y[-1,8]

Ⅳ。课堂练习

课本P24练习17.

Ⅴ。课时小结

本节课我们学习了函数的定义(包括定义域、值域的概念)、区间的概念及求函数定义域的方法。学习函数定义应注意的问题及求定义域时的各种情形应该予以重视。(本小结的内容可由学生自己来归纳)

Ⅵ。课后作业

课本P28,习题1、2. 文 章来

高一数学集合教案 篇二

教学目的:

(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;

(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

教学重点:

集合的交集与并集、补集的概念;

教学难点:

集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

【知识点】

1、并集

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

记作:A∪B读作:“A并B”

即:A∪B={x|x∈A,或x∈B}

Venn图表示:

第4 / 7页

A与B的所有元素来表示。 A与B的交集。

2、交集

一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B读作:“A交B”

即:A∩B={x|∈A,且x∈B}

交集的Venn图表示

说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

拓展:求下列各图中集合A与B的并集与交集

A

说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集

3、补集

全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementary set),简称为集合A的补集,

记作:CUA

即:CUA={x|x∈U且x∈A}

第5 / 7页

补集的Venn图表示

说明:补集的概念必须要有全集的限制

4、求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分

交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5、集合基本运算的一些结论:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,则A?B,反之也成立

若A∪B=B,则A?B,反之也成立

若x∈(A∩B),则x∈A且x∈B

若x∈(A∪B),则x∈A,或x∈B

¤例题精讲:

【例1】设集合U?R,A?{x|?1?x?5},B?{x|3?x?9},求A?B,?U(A?B)。解:在数轴上表示出集合A、B。

【例2】设A?{x?Z||x|?6},B??1,2,3?,C??3,4,5,6?,求:

(1)A?(B?C);(2)A??A(B?C)。

【例3】已知集合A?{x|?2?x?4},B?{x|x?m},且A?B?A,求实数m的取值范围。

XX且x?N}【例4】已知全集U?{x|x?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系。

高一数学教案 篇三

一、教学目标

1.知识与技能

(1)解二分法求解方程的近似解的思想方法,会用二分法求解具体方程的近似解;

(2)体会程序化解决问题的思想,为算法的学习作准备。

2.过程与方法

(1)让学生在求解方程近似解的实例中感知二分发思想;

(2)让学生归纳整理本节所学的知识。

3.情感、态度与价值观

①体会二分法的程序化解决问题的思想,认识二分法的价值所在,使学生更加热爱数学;

②培养学生认真、耐心、严谨的数学品质。

二、 教学重点、难点

重点:用二分法求解函数f(x)的零点近似值的步骤。

难点:为何由︱a - b ︳< 便可判断零点的近似值为a(或b)?

三、 学法与教学用具

1.想-想。

2.教学用具:计算器。

四、教学设想

(一)、创设情景,揭示课题

提出问题:

(1)一元二次方程可以用公式求根,但是没有公式可以用来求解放程 ㏑x+2x-6=0的根;联系函数的零点与相应方程根的关系,能否利用函数的有关知识来求她的根呢?

(2)通过前面一节课的学习,函数f(x)=㏑x+2x-6在区间内有零点;进一步的问题是,如何找到这个零点呢?

(二)、研讨新知

一个直观的想法是:如果能够将零点所在的范围尽量的缩小,那么在一定的精确度的要求下,我们可以得到零点的近似值;为了方便,我们通过“取中点”的方法逐步缩小零点所在的范围。

取区间(2,3)的中点2.5,用计算器算得f(2.5)≈-0.084,因为f(2.5)xf(3)<0,所以零点在区间(2.5,3)内;

再取区间(2.5,3)的中点2.75,用计算器算得f(2.75)≈0.512,因为f(2.75)xf(2.5)<0,所以零点在(2.5,2.75)内;

由于(2,3),(2.5,3),(2.5,2.75)越来越小,所以零点所在范围确实越来越小了;重复上述步骤,那么零点所在范围会越来越小,这样在有限次重复相同的步骤后,在一定的精确度下,将所得到的零点所在区间上任意的一点作为零点的近似值,特别地可以将区间的端点作为零点的近似值。例如,当精确度为0.01时,由于∣2.5390625-2.53125∣=0.0078125<0.01,所以我们可以将x=2.54作为函数f(x)=㏑x+2x-6零点的近似值,也就是方程㏑x+2x-6=0近似值。

这种求零点近似值的方法叫做二分法。

1.师:引导学生仔细体会上边的这段文字,结合课本上的相关部分,感悟其中的思想方法.

生:认真理解二分法的函数思想,并根据课本上二分法的一般步骤,探索其求法。

2.为什么由︱a - b ︳<便可判断零点的近似值为a(或b)?

先由学生思考几分钟,然后作如下说明:

设函数零点为x0,则a<x0<b,则:

0<x0-a<b-a,a-b<x0-b<0;

由于︱a - b ︳<,所以

︱x0 - a ︳<b-a<,︱x0 - b ︳<∣ a-b∣<,

即a或b 作为零点x0的近似值都达到了给定的精确度。

(三)、巩固深化,发展思维

1.学生在老师引导启发下完成下面的例题

例2.借助计算器用二分法求方程2x+3x=7的近似解(精确到0.01)

问题:原方程的近似解和哪个函数的零点是等价的?

师:引导学生在方程右边的常数移到左边,把左边的式子令为f(x),则原方程的解就是f(x)的零点。

生:借助计算机或计算器画出函数的图象,结合图象确定零点所在的区间,然后利用二分法求解.

(四)、归纳整理,整体认识

在师生的互动中,让学生了解或体会下列问题:

(1)本节我们学过哪些知识内容?

(2)你认为学习“二分法”有什么意义?

(3)在本节课的学习过程中,还有哪些不明白的地方?

(五)、布置作业

P92习题3.1A组第四题,第五题。

高一数学集合教案 篇四

1.1.2集合的表示方法

一、教学目标:

1、集合的两种表示方法(列举法和特征性质描述法)。

2、能选择适当的方法正确的表示一个集合。

重点:集合的表示方法。

难点:集合的特征性质的概念,以及运用特征性质描述法表示集合。

二、复习回顾:

1、集合中元素的特性:______________________________________.

2、常见的数集的简写符号:自然数集 整数集 正整数集

有理数集 实数集

三、知识预习:

1. ___________________________________________________________________________ ____________________________________________________________________叫做列举法;

2. _______________________ ____________________________________________________叫做集合A的一个特征性质。 ___________________________________________________________________________________

叫做特征性质描述法,简称描述法。

说明:概念的理解和注意问题

1. 用列举法表示集合时应注意以下5点:

(1) 元素间用分隔号,

(2) 元素不重复;

(3) 不考虑元素顺序;

(4) 对于含有较多元素的集合,如果构成该集合的元素有明显规律,可用列举法,但必须把元素间的规律显示清楚后方能用省略号。

(5) 无限集有时也可用列举法表示。

2. 用特征性质描述法表示集合时应注意以下6点;

(1) 写清楚该集合中元素的代号(字母或用字母表达的元素符号);

(2) 说明该集合中元素的性质;

(3) 不能出现未被说明的字母;

(4) 多层描述时,应当准确使用且和或

(5) 所有描述的内容都要写在集合符号内;

(6) 用于描述的’语句力求简明,准确。

四、典例分析

题型一 用列举法表示下列集合

例1 用列举法表示下列集合

(1)A={x N|0

变式训练:○1课本7页练习A第1题。 ○2课本9页习题A第3题。

题型二 用描述法表示集合

例2 用描述法表示下列集合

(1){-1,1} (2)大于3的全体偶数构成的集合 (3)在平面 内,线段AB的垂直平分线

变式训练:课本8页练习A第2题、练习B第2题、9页习题A第4题。

题型三 集合表示方法的灵活运用

例3 分别判断下列各组集合是否为同一个集合:

(1)A={x|x+32} B={y|y+32}

(2) A={(1,2)} B={1,2}

(3) M={(x,y)|y= +1} N={y| y= +1}

变式训练:1、集合A={x|y= ,x Z,y Z},则集合A的元素个数为( )

A 4 B 5 C 10 D 12

2、课本8页练习B第1题、习题A第1题

例4 已知集合A={x|k -8x+16=0}只有一个元素,试求实数k的值,并用列举法表示集合A.

作业:课本第9页A组第2题、B组第1、2题。

限时训练

1. 选择

(1)集合 的另一种表示法是( B )

A. B. C. D.

(2) 由大于-3小于11的偶数所组成的集合是( D )

A. B.

C. D.

(3) 方程组 的解集是( D )

A. (5, 4) B. C. (-5, 4) D. (5,-4)

(4)集合M= (x,y)| xy0, x , y 是( D )

A. 第一象限内的点集 B. 第三象限内的点集

C. 第四象限内的点集 D. 第二、四象限内的点集

(5)设a, b , 集合 1,a+b, a = 0, , b , 则b-a等于( C )

A. 1 B. -1 C. 2 D. -2

2. 填空

(1)已知集合A= 2, 4, x2-x , 若6 ,则x=___-2或3______.

(2)由平面直角坐标系内第二象限的点组成的集合为__ __.

(3)下面几种表示法:○1 ;○2 ; ○3 ;

○4(-1,2);○5 ;○6 . 能正确表示方程组

的解集的是__○2__○5_______.

(4) 用列举法表示下列集合:

A= =___{0,1,2}________________________;

B= =___{-2,-1,0,1,2}________________________;

C= =___{(2,0), (-2,0),(0,2),(0,-2)}___________.

(5) 已知A= , B= , 则集合B=__{0,1,2}________.

3. 已知集合A= , 且-3 ,求实数a. (a= )

4. 已知集合A= .

(1) 若A中只有一个元素,求a的值;(a=0或a=1)

(2)若A中至少有一个元素,求a的取值范围;(a1)

(3)若A中至多有一个元素,求a的取值范围。(a=0或a1)

高一数学教案 篇五

[教学重、难点]

认识直角三角形、锐角三角形、钝角三角形、等腰三角形和等边三角形,体会每一类三角形的特点。

[教学准备]

学生、老师剪下附页2中的图2。

[教学过程]

一、画一画,说一说

1、学生各自借助三角板或直尺分别画一个锐角、直角、钝角。

2、教师巡查练习情况。

3、学生展示练习,说一说为什么是锐角、直角、钝角?

二、分一分

1、小组活动;把附页2中的图2中的三角形进行分类,动手前先观察这些三角形的特点,然后小组讨论怎样分?

2、汇报:分类的标准和方法。可以按角来分,可以按边来分。

二、按角分类:

1、观察第一类三角形有什么共同的特点,从而归纳出三个角都是锐角的’三角形是锐角三角形。

2、观察第二类三角形有什么共同的特点,从而归纳出有一个角是直角的三角形是直角三角形

3、观察第三类三角形有什么共同的特点,从而归纳出有一个角是钝角的三角形是钝角三角形。

三、按边分类:

1、观察这类三角形的边有什么共同的特点,引导学生发现每个三角形中都有两条边相等,这样的三角形叫等腰三角形,并介绍各部分的名称。

2、引导学生发现有的三角形三条边都相等,这样的三角形是等边三角形。讨论等边三角形是等腰三角形吗?

四、填一填:

24、25页让学生辨认各种三角形。

五、练一练:

第1题:通过“猜三角形游戏”让学生体会到看到一个锐角,不能决定是一个锐角三角形,必须三个角都是锐角才是锐角三角形。

第2题:在点子图上画三角形第3题:剪一剪。

六、完成26页实践活动。

上面内容就是我为您整理出来的5篇《高一数学教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在我。

本文由用户liao分享,如有侵权请联系。如若转载,请注明出处:http://www.yunpanclub.com/22119.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注