用因式分解法求解一元二次方程教案 初中数学教案:用因式分解法解一元二次方程(二)(优秀2篇)

初中数学教案:用因式分解法解一元二次方程(二)(优秀2篇)

《一元二次方程》教案 篇一

《一元二次方程》全章教案

单元要点分析

教材内容

1.本单元教学的主要内容。

一元二次方程概念;解一元二次方程的方法;一元二次方程应用题。

2.本单元在教材中的地位与作用。

一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法。学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程。应该说,一元二次方程是本书的重点内容。

教学目标

1.知识与技能

了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的`数学模型的方法;应用熟练掌握以上知识解决问题。

2.过程与方法

(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型。根据数学模型恰如其分地给出一元二次方程的概念。

(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。

(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程。

(4)通过用已学的配方法解ax2+bx+c=0(a0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac0,b2-4ac=0,b2-4ac0.

(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它。

(6)提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题。

《一元二次方程》教案 篇二

教学目的

1.了解整式方程和一元二次方程的概念;

2.知道一元二次方程的一般形式,会把一元二次方程化成一般形式。

3.通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。

教学难点和难点:

重点:

1.一元二次方程的有关概念

2.会把一元二次方程化成一般形式

难点:

一元二次方程的含义。

教学过程设计

一、引入新课

引例:剪一块面积是150cm2的长方形铁片,使它的长比宽多5cm、这块铁片应该怎样剪?

分析:1.要解决这个问题,就要求出铁片的长和宽。

2.这个问题用什么数学方法解决?(间接计算即列方程解应用题。

3.让学生自己列出方程(x(x十5)=150)

深入引导:方程x(x十5)=150有人会解吗?你能叫出这个方程的名字吗?

二、新课

1.从上面的引例我们有这样一个感觉:在解决日常生活的计算问题中确需列方程解应用题,但有些方程我们解不了,但必须想办法解出来。事实上初中代数研究的主要对象是方程。这部分内容从初一一直贯穿到初三。到目前为止我们对方程研究的还很不够,从今天起我们就开始研究这样一类方程——–一元一二次方程(板书课题)

2.什么是—元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程,就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的。最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程.(板书一元二次方程的定义)

3.强化一元二次方程的概念

下列方程都是整式方程吗?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:(2)x2=4

(2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8

从以上4例让学生明白判断一个方程是否是一元二次方程不能只看表面、而是能化简必须先化简、然后再查看这个方程未知数的最高次数是否是2。

4.一元二次方程概念的延伸

提问:一元二次方程很多吗?你有办法一下写出所有的一元二次方程吗?

引导学生回顾一元二次方程的定义,分析一元二次方程项的情况,启发学生运用字母,找到一元二次方程的一般形式

ax2+bx+c=0(a≠0)

1).提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠就成了一元一次方程了)。

2).讲解方程中ax2、bx、c各项的名称及a、b的系数名称.

3).强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是“=”的右边必须整理成0。

强化概念(课本P6)

1.说出下列一元二次方程的二次项系数、一次项系数、常数项:

(1)x2十3x十2=O(2)x2—3x十4=0;(3)3×2-5=0

(4)4×2十3x—2=0;(5)3×2—5=0;(6)6×2—x=0。

2.把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:

(1)6×2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

课堂小节

(1)本节课主要介绍了一类很重要的方程—一一元二次方程(如果方程未知数的最高次数为2,这样的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左边最多三项、其中二次项、常数项可以不出现、但二次项必须存在。特别注意的是“=”的右边必须整理成0;

(3)要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数.

课外作业:略

读书破万卷下笔如有神,以上就是我为大家整理的2篇《初中数学教案:用因式分解法解一元二次方程(二)》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在我。

本文由用户feng分享,如有侵权请联系。如若转载,请注明出处:http://www.yunpanclub.com/21994.html

(0)

相关推荐

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注