北师大版五年级上册数学期末试卷 篇一
一、认真思考,细心填写。
1、在自然数(0除外)中,最小的质数是( ),最小的合数是( ),最小的偶数是( ),最小的奇数是( )。
2、20的因数有( )个,7的倍数有( )个。20以内的质数有( )个,合数有( )个。
3、用0,1,2,3组成一个同时是2、5的倍数的的四位数是( );组成一个同时是2、3的倍数的最小的四位数是( )。
4、把10克糖放入100克水中,糖占糖水的( )。
5、一个盒子里装有一个红球,四个黄球,三个白球,从中任意摸出一个球,摸出红球的可能性是( );摸出黄球的可能性是( );摸出白球的可能性是( )。
二、火眼金睛,准确判断。
1、一个数的因数一定比它的倍数小。( )
2、在0.3、0.33和13 中,0.33。( )
3、三角形的面积是平行四边形的面积的一半。( )
4、3/4与1/5的和的分数单位是1/20。( )
5、个位上是3、6、9的数都是3的倍数。( )
三、精心挑选,慎重选择。
1、要使四位数106□能同时为2和3的倍数,□里应填( )。
A. 2 B. 4 C. 6
2、10以内所有质数的和是( )。
A. 18 B. 17 C. 20
3、一个三位数,位是最小的奇数,第二位是最小的合数,个位是最小的偶数,这个数是( )。
A. 120 B. 142 C. 124
4、把3化成分母是4的假分数是( )。
A. 3/4 B. 7/4 C. 12/4
5、某人掷一硬币,结果连续五次都是正面朝上,请问他第六次掷硬币时正面朝上的可能性是( )。
A. 16 B. 1 C. 12 四、耐心细致,当好计算师。
1、直接写出得数。
1- 5/12 1/2 +1/3 5/6 – 1/3 4/7 +1/8 1/9 +1/10
2、脱式计算。
1/6+1/3+1/4 1- 1/2 – 1/3 1- (3/8 +1/6) 5/6- 2/7 +1/6
3、解方程。
3x+2x=35 47 +x=89 x- 25 =14
五、走进生活,灵活运用。
1、王叔叔和李叔叔同时从相距1500米的两地相对而行,王叔叔骑摩托车的速度是800米/分,李叔叔骑自行车的速度是200米/分。
(1)估计两人在何处相遇,在图中标出。
(2)几分钟后相遇?
(3)相遇时王叔叔走了多少米?
2、一节课的时间是23 小时,有一节科学课老师讲解用了15 小时,小组讨论用了310 小时,其余时间学生做实验,学生做实验用了多长时间?
3、螃蟹和青蛙共11只,共有56条腿,螃蟹和青蛙各有多少只?
北师大五年级数学上册教案 篇二
教学内容:
北师大版小学数学五年级上册。(教科书第82、83页。)
课标分析:
本节课的主要内容是使学生能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,发展学生的归纳与概括的能力,渗透数学建模的思想,从中感受数学文化的魅力。
教材分析:
本课的内容是独立成篇的,这节课与本单元的其它知识之间没有必然的前后联系,是一节相对独立的数学活动课。教材提供的学习内容对于五年级的学生来说比较容易。但本课知识虽然简单,却是帮助学生建立数学模型的好题材,即是让学生能在观察活动中,发现点阵中隐含的规律,又是让学生体会到图形与数的联系,发展学生归纳与概括能力,渗透数学建模思想。
学生分析:
1、学生的知识基础
五年级学生在数的方面,已经认识了自然数和整数,倍数因数,奇数偶数,质数合数,小数、分数等。在形的方面,对长方形、正方形、平行四边形,三角形,梯形的特征也有了深刻的认识。但是学生对利用图形研究数,寻找数和图形之间的联系,还有困难。学生对线围成的基本图形有深刻的认识,但是点阵中的几何图形,只有点,没有线,学生要利用自己的想象加以补充和延伸,这对学生来说会感觉比较陌生。
2、学生的能力基础
学生在一年级学过找规律填数,二年级学过按规律接着画,四年级学过探索图形的规律。因此五年级学生具备一定的观察能力、抽象概括能力、逻辑推理能力等。然而小学生的思维特点是从具体形象思维逐步向抽象思维过渡,这种抽象逻辑思维在很大程度上仍然依靠感性经验的支持。而这节课完全是数学思想、数学方法的教学,极为抽象,因此对部分学生来说还是会感觉有点困难。
教学目标:
1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。
2、培养学生推理、观察、归纳和概括能力。
3、感受“数形结合”的神奇之美,并获得“我能发现”之成功体验。
教学重点:
探究发现点阵中的规律。
教学难点:
总结概括规律。
教学准备:
课件,五子棋,磁扣等。
教法学法:
1、教师教学方法:让学生独立或合作式探究规律,鼓励学生有自己的发现、有不同的发现。尽量减少教师的介入
2、学生学习方法:大胆让学生画一画、摆一摆、算一算,让学生多角度探究规律,充分感受美图美思
教学过程:
一、展示图片,引出课题
1、展示图片,(投影)今天老师给大家带来了几幅图片,请同学们欣赏。
师:这些图片有什么特点?
生:好像都是由点组成的。
师:是呀,不要小看了这样一个小小的点,点是几何图形中最基本的图形,许许多多的点按照一定的规律排列起来就构成了点阵。
早在20xx多年前,古希腊的数学家们就是从这样一个小小的点开始研究,并且发现了有许多个这样的点组成的点阵中许多有趣的规律。这节课,我们也来尝试研究点阵的规律。(板书课题——点阵中的规律)。
二、细心观察,探求规律
1、出示正方形点阵,探索正方形点阵的规律。
A、第一个规律。
师:(出示点阵),这就是他们当时研究过的一组点阵,请大家用数学的眼光仔细观察,思考这样两个问题:(出示思考题)(指名读)
(1)每个点阵可以看成什么图形?
(2)每个点阵中分别有多少个点?你是怎样观察出来的?
小组讨论,指名回答。
师:每个点阵可以看成什么图形?(正方形),同意吗?
生1:我认为第一个点阵不能看成一个正方形,是一个圆形。
师:其他同学也同意他的观点吗?
师:其实第一个点阵虽然只是一个点,但是我们可以把它看成边长是1的小正方形。是吗?
师:每个点阵中分别有多少个点?
生2:第一个点阵有1个点,第二个点阵有4个点,第三个点阵有9个点,第四个点阵有16个点。
师:你能说一说你是怎么得到每个点阵中点的个数的吗?你是怎样观察出来的?
生:我是通过数出每个点阵中点的个数得到的。
师:谁还有不同的方法?有没有更快一些的方法?
生:我是通过计算得到的。
师:能具体说一说是怎样通过计算得到的吗?
生:第一个点阵有1个点;第二个点阵横着看,每行有2个点,有2行,共有2×2=4个点;第三个点阵每行有3个点,有3行,共有3×3=9个点;第4个点阵每行有4个点,有4行,共有4×4=16个点。
师:同学们现在你们发现正方形点阵的规律了吗?点阵的序号与它的点的个数算式有没有关系?有什么关系?如果用字母n来表示点阵的序号,那么正方形点阵点的个数是多少呢?
生:我们分析了前面几个点阵图的特点,认为在这个点阵图中,点的个数的规律是:1×1,2×2,3×3,4×4,也就是n×n 师:这种数法真是又快又方便!照这样下去,能不能根据你们的发现画出第5个点阵呢?(学生画,指名说,教师投影显示)
师:第6个呢、第7个第100个点阵的点的个数都能瞬间求出来。也就是说:“是第几个点阵,就用几乘几”(板书)
师:如果一个点阵它有81个点,它应该是第几个点阵?每行有几个点?每列有几个点?
(这个画点阵的过程虽然简单,但体现了由数——形的转换。培养了学生主动进行数形转换的意识。)
B、第2个规律
师:刚才我们是怎样观察的?(横着数和竖着数)
正方形点阵还有没有其它的观察方法呢?能不能换个角度观察?
“斜着看又可以得到什么新的与序号有关的算式呢?请同学们独立思考,写出算式,然后汇报。”(投影)
观察并思考
(1)分别用算式表示每个点阵点的个数。
(2)你发现了什么规律?
学生汇报,教师板书
第1个:1=1
第2个:1+2+1=4
第3个:1+2+3+2+1=9
第4个:1+2+3+4+3+2+1=16
第N个:1+2+3+N++3+2+1
师:“谁发现什么规律呢?”
生:“如第2个点阵就从1加到2再加回来,第3个点阵就从1加到3再加回来,第4个点阵就从1加到4再加回来”。
师小结:“第几个点阵就从1连续加到几,再反过来加回到1”这个规律。
刚才是横竖数,“第几个点阵就是几乘几”。
C、第3个规律
师:刚才同学们发现了点阵中的两个规律,这些点阵中还有其它的规律吗?还能换个角度去思考吗?(出示教材第82页第(3)题图),老师把第5个点阵中的点用五条折线划分,这样划分后,看看你又有什么新发现呢?
师:我们把第1个折现内的点看成第一个点阵,该用什么算式表示?其他呢?小组讨论,列出算式,全班汇报。
小组代表汇报。
生:(总结)每用折线画一次后,点阵中的个数是
1=1 1+3=4 1+3+5=9 1+3+5+7=16
师:(总结)这样划分后,点阵中的规律是:1,1+3,1+3+5,1+3+5+7,
师:第1个点阵是1,第2个点阵是在第1个的基础上多3个,第3个点阵呢? 有的学生可能说:“这次都是奇数相加。”
教师问:“从奇数几加起?加几个?是随意的几个奇数相加吗?”
通过这样的提问,引导学生说出“第几个点阵就从1开始加几个连续奇数”。
师:真了不起。这种划分方法,我们可以叫做“折线划分法”。
第几个点阵,就是从1开始加几个连续奇数。
通过研究点阵,我们发现这组正方形点阵中有很多规律。这3种规律是从不同的角度观察出来的,无论你从什么角度去观察,得到的结论都与它的序号有关系,所以我们以后再研究点阵的时候,都要想一想跟它的序号有什么关系,这样才能更简单。
(在这里,教师不是让学生发现规律就结束了,而是让学生活学活用这些规律。让学生体会到我们刚才发现的正方形点阵中的规律,其实就是一个完全平方数的规律,它可以应用到所有的完全平方数。)
刚才这3种方法,哪一种更简便?你更喜欢哪一种?那么我们再研究正方形点阵的时候,用哪一种更简便?但点阵是丰富的,多变的,不仅只有正方形点阵,还有其他图形的点阵。这时,我们就需要开拓自己的思维,多想一些方法来研究它们与序号之间的关系。有没有兴趣再研究其他图形的点阵?
(在刚才的新课教学的环节中,学生经历了观察、思考、合作、交流、表达等过程,培养了观察能力、想象能力、概括能力。并深刻体验到数与形,数与式,式与式之间的联系,培养学生利用数形结合的思想来解决问题的意识和能力。)
三、牛刀小试
1、 (课件出示教材第83页试一试第1题)师:你们能用刚学过的几种方法中发现这个点阵的规律吗?
生:竖排×横排:1×2,2×3,3×4,4×5 师:与它们的序号有什么关系?都是序号和它后面相邻的两个自然数的乘积。在点子图上画出第5个点阵。
小组交流,研究:上面的点阵还有其他的规律吗?
生:(1)两个两个数:1×2,3×2,6×2,10×2,15×2 (2)斜着一层一层数:1+1,1+2+2+1,1+2+3+3+2+1,1+2+3+4+4+3+2+1 2.师:同学们真善于发现和创造规律。除了正方形和长方形点阵外,还有很多其它形状的点阵,我们研究他们,同样会有很大的收获。看看,这是一组什么形状的点阵?(课件出示试一试第2题三角形点阵图)你能用一层一层数的方法,表示你发现的规律吗?展示,根据你发现的规律画出第五个点阵。
生;1,1+2,1+2+3,1+2+3+4
师:其他同学看明白了吗?有什么规律?(第几个点阵,就从1加到几。)
上面的点阵还有其他的规律吗?学生思考,指名说。(投影显示)
四、兴趣优在:(课件出示教材第83页练一练)
第2题:按规律画出下一个图形。
师:这道题就象梅花桩,指第一个,走了几个梅花桩?
生:3个。
师:指第二个,共走了几个梅花,增加几个桩?
生:7个,增加了4个。
师:指第三个,共走了几个梅花桩,又增加了几个桩?
生:13个,又增加了6个。
师:如果再往下走,你们想想会再多走几个桩,你能写出算式吗?写完算式,学生自己独立画出点阵。小组合作,讨论点阵中蕴涵的规律,然后汇报交流。
生:交流,探索总结规律
(这一题与前几个题区别很大,前几题的点阵可以看作规则的几何图形,这一题点阵图不规则,要画出下一个图形,既要抓住数量的变化,又要抓住形状的变化。进一步体会到数形结合的重要。)
五、知识拓展
欣赏生活中的点阵图片。思考:生活中有哪些地方运用点阵的知识?(座位、站排做操、楼房的窗子等。
师:点阵不只是点,很多有规律的排列,都可以看成点阵。
投影跳棋、围棋、十字绣、花坛里的鲜花、水晶灯等图片。
六、课堂小结
师:同学们今天学习了这么多的点阵,有没有收获,哪些收获?
七、课 www.huzhidao.com 后操作
自创新的点阵图,并说出点阵规律。
北师大版五年级上册数学教案 篇三
教学内容:
教材第27~28页的内容及练习。
教学目标:
1、借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。
2、掌握一个数除以分数的计算方法,并能正确计算。
3、培养学生解决简单实际问题的能力。
教学重难点:
1、掌握一个数除以分数的计算方法,并能正确计算。
2、整数除以分数的计算法则推导过程。
教学过程:
一、创设情景 激趣揭题
1、猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?
设计意图:设疑激趣。 明确目标。
二、扶放结合 探究新知
1、分一分,引导感知一个数除以分数的意义。
2、画一画:引导完成27页的画一画,理解分数除以分数的计算方法。
3、引导完成28页的填一填,想一想,你发现了什么?
4、引导归纳计算方法。
设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。
三、反馈矫正
出示P28的试一试。
1、统一分数除法的计算法则。
2、指导完成P28练一练的1~4题。
四、小结评价 布置预习
1、引导小结:通过这节课的学习,你有什么收获?
4÷1/2=4×2=8 ;4÷1/4=4×4=16
一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。
北师大五年级数学上册教案 篇四
一、创设知识迁移情景,揭示课题明确目标
1.呈现知识迁移情景。
(1)师:这里有一张医生给数学病人开的处方,不知药用对了没有,请各位小医生给以指导。
(2)出示(小黑板)
病症 药名
432-2 =412
43.2+2 =43.2
8厘米 + 3米 =11米
3元 + 3角 =6元
2、交流信息,重点了解异分母分数加减法的前提是计数单位相同。
3、揭示课题,明确目标。
(1)师:同学们,同分母分数加减法,由于分数单位相同,可以直接相加减,那么,异分母加减法呢?(揭示课题)
(2)师:看到课题你想学到那些知识?
二、自主探究,获取新知。
1、指导自学,合作交流。
(1)告诉学生按照读想划的过程自学课本内容,并给学生提纲自学提纲供参考(小黑板出示)。
(2)小组讨论,提出问题,解决问题。
2、汇报交流,获取新知。
(1)小组汇报,得出结论。
(2)探究异分母分数加减法的计算法则(合作讨论,引导小结,并看书验证)。
(3)形式质疑。
三、精心设练,创新思维。
1、巧设训练,巩固新知。
(1)师:下面老师带领同学们到数学乐园去游玩。进入乐园后,以小组学习为主,喜欢玩什么就玩什么,玩开心点哦。
课件出示:
数 学 乐 园
填空池: 方程河:
+ = + = x+ =
– = - = x- =
+ = + = 1-x=
迷宫: 计算园:
请你把 - 的计算过程用学具表示出来? + - +
(2)反馈信息,汇报收获。
(3)由计算园的收获,强化异分母分数加减法的计算法则,并强调计算结果的合理性(板书相关内容)。
(4)师:同学们学的不错,敢接受挑战吗?(举手抢答)
师出示口算卡: + = + = + = – = + =
2、自主探究,拓展思维。
师:下面我们利用学到的本领,探究这几道题的聪明方法。
(1)自主探究,合作交流/
课件出示:
+ = + = 讨论:(1)它们的加法有什么特点
+ = + = ( 2)它们的和有什么特点?
+= + = (3)从中你发现了什么规律?
(2)汇报交流,得出结论,并验证。
四、全课总结(小组交流研讨、汇报)。
师:1.这节课你有那些收获?
2.你还有什么问题吗?
北师大五年级数学上册教案 篇五
教学目标:
1、理解分数、小数相互转化的必要性。
2、能正确地将简单分数、有限小数相互转化。
3、使学生掌握分数化小数的一般方法,掌握最简分数化成有限小数的规律,培养学生观察、比较、判断。归纳的思维能力。
重点难点:
掌握最简分数化成有限小数的规律。
教具准备:
多媒体课件和题卡。
教学过程
一。 导入新课
1.复习。
(1)说说下面小数的意义:
0.2表示( )分之( ),0.75和0.625呢?
(2)把下面的分数化成小数,并说出方法。
1/10 3/100 51/1000
2、激趣引入。
同学们,你们每天都看课外书吗?每天看课外书的时间是多少?(学生自由说,汇报交流。)
这节课,我们就来研究一下看课外书的时间能给我们带来哪些数学问题。(板书:看课外书时间)
二、探究新知
1、课件出示主题图。
下面我们来了解林林和明明每天的看课外书时间。
2、观察主题图,理解图意。
请同学们仔细观察图表,从中你得到了哪些数学信息?(板书:林林0.4时 明明1/4时)
3、提出问题,进行估计。
请同学们估一估,谁用的时间多一些?(板书:谁用的时间多一些?) (估计汇报并说明道理。)
4、解决问题的探索。
同学们有的说林林的多,有的说明明的多,怎样才能精确的比较出谁用的时间多呢?
(1)自主探索。请同学们独立思考并记录下解决过程,你用了什么样的方法进行比较。
(2)合作交流。和小组的同学交流一下自己的比较方法。
(3)全班汇报。哪个小组先来汇报你们的比较方法?(根据学生的汇报,教师进行板书。)
5、课件展示课本中呈现的方法。
老师用课件展示课本上给我们呈现的方法,看不清的请看课本上相应的图。注意对照你们探索出来的方法,哪些方法是与你们相似的,哪些方法是没有想到的。(每展示一幅图时指名学生说说比较的方法)
6、讨论并归纳分数、小数的互化方法。
<1>分数化成小数
(1)做课本上的试一试第2题。(独立练习)
(2)请同学们讨论并归纳出分数化成小数的基本方法是什么?(小组讨论全班汇报课件展示)
<2> 小数化成分数
(1)做课本上的试一试第1题。(独立练习集体订正,教师板书)
(2)请同学们讨论并归纳出小数化成分数的基本方法是什么?(小组讨论全班汇报课件展示)
三、巩固练习
1、把下面的分数化成小数,把小数化成分数。(课件出示练习题)
17/20 7/8 14/ 25 0.57 1.23 7.4
2、比较下面数的大小。(课件出示练习题)
2/3 , 0.67 , 5/8
3、 把3/4 5/14 13/40 5/6化成小数,你发现了什么?
怎样解决?
(1)引导学生观察:每个分数所化成的小数,是什么样的小数?每个分数的分母与这个分数所化成的小数有什么联系?
(2)学生把每个分数的分母分解质因数。
(3)观察质因数,启发学生想一想:什么样的分数能化成有限小数?什么样的分数不能化成有限小数?
(4)引导学生概括。
四、课堂小结
1、通过这节课的学习你有哪些收获?(分数、小数的互化)
2、进行分数、小数的互化时有什么要注意的?(如,分数化成小数除不尽时,要;小数化成分数不是最简分数时,要)
五、实践活动
请同学们在自己周围寻找用分数或小数表示的信息,将寻找到的信息与同学进行交流。
北师大五年级数学上册教案 篇六
教学目标:
1.能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系;
2.发展归纳与概括的能力;
3.了解数学发展的历史,感受数学文化的魅力。
教学重点:
引导学生发现和概括点阵中的规律
教学难点:
寻求多种解决问题的方法,体会图形与数的联系
教学过程:
一、创设情境,生成问题
1.观察图形中的规律
上课前,同学们凭借灵敏的听力找到了规律(板书:规律),现在,老师来考考你们的眼力。请看屏幕,仔细观察,你能从这一组图形中发现规律吗?
(出示幻灯片3)3:生观察说规律,可提示,师总结)
2.观察一组数的规律。
看来,从不同的角度观察就会有不同的发现,同学们的眼力真不错!让我们继续,(出示幻灯4)你能从这一组数中发现规律吗?(1、4、9、16、25 )
如果有困难不能出色完成,那我们今天就来一起研究,从而导入
3.出示点子图
同学们,这一组数中其实还隐藏着其他的规律,只是仅凭观察这几个数不太容易发现。那我们该怎么办呢?(生想办法)
好主意!为了帮助同学们更直观、更深入地研究这一组数,老师把它们分别画成了一种最简单的图形点(幻灯5出示课本97页主题图),如果我们能发现这几个点子图之间的变化规律,就可以发现这一组数中隐藏的规律了。让我们马上开始!
二、探索交流,解决问题
1.渗透不同的观察方法
(1)仔细观察,想一想,这几个点子图之间究竟有什么变化呢?把你的发现说给同桌听;老师并用幻灯片6展示。
(2)指名说怎么观察的?它们之间有什么变化?
(副板书:横竖看、斜着看、拐弯看)
(3)设问,那第5个点阵有多少个点?请画出此图形。
2.小组探究
同学们都很会思考,从不同的角度观察到了不同的变化,为了更清晰、更准确的感受这些变化,现在,我们把观察和动手结合起来,小组合作,选择一种观察顺序,用线条分一分这几个图中的点,然后根据划分的结果写出算式来表示这几个数。最后想一想,你们从中发现了什么规律。听明白了吗?好的,现在请小组负责,观看点子图,马上开始你们的合作研究;再次出示幻灯片6。
合作任务
1.选择一种观察顺序,用线条分一分这几个图中的点。
2.根据划分的结果写出算式来表示这几个数。
3.想一想,你们从中发现了什么规律?
1=()4=()9=()16=()
(1)学生分组探究,师巡视
(2)在展台上展示交流。(哪个小组先来汇报你们的合作成果?)
①生展示分法、算式和规律其他组补充总结规律
②学生说算式师板书
③拓展aa
第5个点子图是什么样的,应该是哪个数?出示片7,用前面的观察方法,再讨论(副板书55)第10个呢?
后两种:下一个图形的算式是什么?(副板书下一个图形的算式)
算一算结果是25吗?
④(出示幻灯片8)原来问题还可以这样想:同一问题有不同的思路和解决方法!
3.小结
同学们真是太能干了,不仅发现了新的规律,还能用规律推测出后面的数。可见,你们不仅听力和眼力好,研究能力和表达能力更是非常的高。
4.揭示点阵
那么,同学们,在寻找这一组数的规律时,是什么帮助了我们?(点子图)是的,像今天我们用到的这种排列很有规律的点子图在数学上又叫点阵。(板书:点阵中的规律)
点阵中的规律可以帮助我们更直观、更方便的研究一个数或者一组数。早在两千多年前,希腊的数学家们就已经利用点阵来研究数了。还有一点一定要告诉你们,刚才我们研究的这组点阵正是当年的数学家们曾经研究过的,不知不觉中竟然当了一回数学家,感觉特好吧?这的确是一件值得我们自豪的事情。
三、巩固应用,内化提高
(一)试一试
怎么样?同学们?用点阵来研究数有趣吧?让我们继续这项有趣的研究。
1.观察下列点阵,你能根据规律画出下一个图形吗?
请看屏幕,这是一组什么形状的点阵?仔细观察这一组点阵,你能根据规律画出下一个图形吗?(请看试一试,同学们用水彩笔涂出下一个图形;可出示幻灯片9来检查学生是否画的正确)
生画展示:说明为什么这样画?(有不同的想法吗)
2.下面的点阵分别代表了哪个数?请你用一组有规律的算式表示这几个数。
这是一组什么形状的点阵?下面的点阵分别代表了哪个数?你能用一组有规律的算式表示这几个数吗?(请看试一试,出示幻灯片10,我们比一比,哪位同学写的又对又快。)
生做展示算式拓展下一个,你能画出地5个图形,再来研究第4个图形。
(拓展)你还有什么发现?展示幻灯片11。
除了这种方法,你还有其它研究方法?(学生思考后,可以出示幻灯片12)
(二)拓展延伸
出示梯形和螺旋形点阵:除了正方形、三角形和长方形点阵之外,还有这样的点阵,什么形状的?
我们来看书本98页的练一练第1题,学生先做后,出示幻灯片13来检查。
对,同学们,在生活中你见过或感受过点阵吗?你见过哪些点阵?(指生说)其实生活中的点阵还有很多,同学们请看(出示幻灯片14)点阵以其独特的魅力被人们广泛的应用于生活,这些点阵中也隐藏着有趣的规律。只是课上的这40分钟太有限了,不过,有兴趣的同学课下可以继续研究。
四、回顾整理,反思提升
1.同学们,时间过的真快,马上要下课了,想一想,在这节课中,你有什么收获?(生谈收获)
2.你们总结的真好!同学们,在生活中,规律是普遍存在的,所以,老师希望每位同学都能从现在开始做个有心人,在以后的生活和学习中,多观察、多思考,继续去发现更多、更奇妙的规律。
板书设计:
点阵中的规律
1、正方形点阵
2、长方形点阵
3、三角形点阵
4、其它点阵
小结:在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系,
感受数学文化的魅力,同一问题有不同的思路和解决方法。
读书破万卷下笔如有神,以上就是我为大家整理的6篇《五年级数学上册教案》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在我。
本文由用户feng分享,如有侵权请联系。如若转载,请注明出处:http://www.yunpanclub.com/21943.html